МИНИСТЕРСТВО РЕГИОНАЛЬНОГО РАЗВИТИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

СВОД ПРАВИЛ

СП 89.13330.2012

КОТЕЛЬНЫЕ

Актуализированная редакция

СНиП II-35-76

КОТЕЛЬНЫЕ УСТАНОВКИ

Издание официальное

www.unistar.ru

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным за коном от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила разработки - Постановлением Правительства Российской Федерации от 19 ноября 2008 г. № 858 «О порядке разработки и утверждения сводов правил».

Сведения о своде правил

- 1 ИСПОЛНИТЕЛИ: ОАО «СантехНИИпроект», ЗАО «ПромтрансНИИпроект», НП «Промышленная безопасность», ФГБУ «ВНИИПО» МЧС России
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
- 3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики
- 4 УТВЕРЖДЕН приказом Министерства регионального развития Российской Федерации (Минрегион России) от № и введен в действие с 2012 г.
- 5 ЗАРЕГЕСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 89.13330.2012 «СНиП II-35-76 Котельные установки»

Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минрегион России) в сети Интернет

Минрегион России 2012

Настоящий нормативный документ не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Минрегиона России.

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Термины и определения	3
4 Общие положения	3
5 Генеральный план и транспорт	6
6 Объемно-планировочные и конструктивные решения	8
7 Пожарная безопасность	11
8 Котельные установки	12
9 Газовоздушный тракт. Дымовые трубы. Очистка дымовых газов	13
9.1 Газовоздушный тракт	13
9.2 Дымовые трубы	14
9.3 Очистка дымовых газов.	16
10 Трубопроводная арматура	16
11 Вспомогательное оборудование	19
12 Водоподготовка и водно-химический режим. Общие требования	22
13 Топливное хозяйство	25
14 Удаление золы и шлака	33
15 Автоматизация. Общие требования	36
16 Электроснабжение. Электротехнические устройства, связь и сигнализация	46
17 Отопление и вентиляция	48
18 Водоснабжение и канализация	50
19 Дополнительные требования к строительству в особых природных условиях	د51
20 Охрана окружающей среды	53
21 Энергетическая эффективность	55
Библиография	57

Приложение 7-1	(рекомендуемое) Категория помещений и зданий (сооружений) по взрывопожарной и пожарной опасности, степень огнестойкости зданий (сооружений), характеристика помещений по условиям среды и классификация зон в соответствии с ПУЭ
Приложение 6-1	(обязательное)Перечень профессий работников котельных по категориям работ и состав специальных бытовых помещений и
	устройств
Приложение 6-1	(рекомендуемое)
Приложение 9-1	(обязательное) Коэффициент запаса при выборе дымососов и дутьевых вентиляторов
Приложение 10-	-1 (рекомендуемое) Минимальные расстояния в свету между поверхностями теплоизоляционных конструкций смежных трубопроводов и от поверхности тепловой изоляции трубопроводов до строительных конструкций
Пругомочи 14	здания
приложение 14-	-1 (рекомендуемое) Минимальная толщина стенок пневмотрубопроводов в зависимости от диаметра
Приложение 17-	-1 (обязательное) Температура воздуха в рабочей зоне производственных помещений, системы вентиляции, способы подачи и удаления воздуха

ВВЕДЕНИЕ

Настоящий свод правил устанавливает требования к проектированию, строительству, реконструкции, капитальному ремонту, расширению и техническому перевооружению котельных, а также устанавливает требования к их безопасности и эксплуатационным характеристикам, которые обеспечивают выполнение требований Федерального закона от 30 декабря 2009 г. З 384-ФЗ «Технический регламент о безопасности зданий и сооружений», Федерального закона от 23 ноября 2009 г. № 261-ФЗ «об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации», Федерального закона от 22 июля 2009 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности», Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»

Основными особенностями настоящего свода правил являются:

приоритетность требований, направленных на обеспечение надежной и безопасной эксплуатации котельных;

обеспечение требований безопасности, установленных техническими регламентами и нормативными правовыми документами федеральных органов исполнительной власти;

защита охраняемых законом прав и интересов потребителей строительной продукции путем регламентирования эксплуатационных характеристик систем теплоснабжения и теплопотребления;

расширение возможностей применения современных эффективных технологий, новых материалов и оборудования для строительство новых, реконструкции, капитального ремонта, расширения и технического перевооружения существующих котельных;

обеспечение энергосбережения и повышение энергоэффективности систем теплоснабжения и теплопотребления;

гармонизация с международными (ИСО) и региональными европейскими (ЕН) нормами..

Настоящий свод правил разработан авторским коллективом:

ОАО «СантехНИИпроект» - к.т.н. Шарипов А.Я., инж. Богаченкова А.С., инж. Садовская Т.И.;

ЗАО «ПромтрансНИИпроект» - инж. Зеленый З.М.;

ОАО НТЦ «Промышленная безопасность» - д.т.н., проф. Котельников В.С.;

ФГБУ «ВНИИПО» МЧС России - к.х.н. Зеленский Г.Т.

КОТЕЛЬНЫЕ

COMBUSTION BOILER SYSTEMS OF HEATING GENERATION

Дата введения

1 Область применения

- 1.1. Настоящий свод правил (далее «СП») следует соблюдать при проектировании, строительстве, реконструкции, капитальном ремонте, расширении и техническом перевооружении котельных, работающих на любом виде топлива, с общей установленной тепловой мощностью $360~{\rm kBr}$ и более с паровыми, водогрейными и пароводогрейными котлами, с давлением пара не более $3.9~{\rm M\Pi a}~(40~{\rm krc/cm}^2)$ включительно и с температурой воды не более $200~{\rm ^0C}$, включая установки для комбинированной выработкой электроэнергии.
- 1.2. СП не распространяется на проектирование котельных тепловых электростанций, в том числе пиковых, котельных с электродными котлами, котлами-утилизаторами, котлами с высокотемпературными органическими теплоносителями (ВОТ) и другими специализированными типами котлов для технологических целей, а также на проектирование автономных источников теплоснабжения интегрированных в здания.
- 1.3 СП не имеет обратного действия и не могут применяться в контрольном порядке для построенных котельных и котельных, строительство которых начато в период не менее одного года после ввода в действие настоящего СП по проектной документации, разработанной в соответствии с указаниями ранее действующего СНиП II-35-76.

2 Нормативные ссылки

В настоящем своде правил использованы ссылки на следующие нормативные документы:

СП 18.13330.2011 «СН	иП II-89-80* Генеральные планы промышленных предприятий"
СП 30.13330.2012 «СН	иП 2.04.01-85* Внутренний водопровод и канализация зданий»
СП 31.13330.2011 «СН	иП 2.04.02-84* Водоснабжение. Наружные сети и сооружения»
СП 33.13330.2012 «Расч	нет на прочность стальных трубопроводов»
СП 34.13330.2012 «СН	иП 2.05.02-85 Автомобильные дороги»
СП 37.13330.2012 «СН	иП 2.05.07-91* Промышленный транспорт»
СП 42.13330.2011 «СН	иП 2.07.01-89* Градостроительство. Планировка и застройка
горо	дских и сельских поселений»
СП 43.13330.2012 «СН	иП 2.09.03-85 Сооружения промышленных предприятий»
СП 44.13330.2011 «СН	иП 2.09.04-87* Административные и бытовые здания»
СП 50.13330.2012 «СН	иП II-3-79* Тепловая защита зданий»
СП 51.13330.2011 «СН	иП II-12-77 Защита от шума»
СП 56.13330.2011 «СН	иП 31-03-2001 Производственные здания»
СП 60.13330.2010 «СН	иП 2.04.05-91* Отопление, вентиляция и кондиционирование»
СП 61.13330.2010 «СН	иП 2.04.14-85* Тепловая изоляция оборудования и
	опроводов»
СП 62.13330.2011 «СН	иП 42-01-2002 Газораспределительные системы»
	иП 2.04.86* Тепловые сети»
СП 90.13330.2012 «СН	иП II-58-75 Электростанции тепловые»
СП 110.13330.2012 «CH	иП 2.11.03-93 Склады нефти и нефтепродуктов. Противопожар-
ные	е нормы»
	ІиП 32-01-95 Железные дороги колеи 1520 мм»
СП 131.13330.2012 «СН	ІиП 23-01-99 Строительная климатология»

Издание официальное

СП 89. 13330.2012	
СП 41-101-95	Проектирование тепловых пунктов
ПБ 03-445-02	Правила безопасности при эксплуатации дымовых труб и вентиляционных промышленных труб
ПБ 03-576-03	Правила устройства и безопасной эксплуатации сосудов работающих под давлением
ПБ 03-585-03	Правила устройства и безопасной эксплуатации технологических трубопроводов
ПБ 10-573-03	Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды
ПБ 10- 574-03	Правила устройства и безопасной эксплуатации паровых и водогрейных котлов
ПБ 12-529-03	Правила безопасности систем газораспределения и газо- потребления
СанПиН 2.2.4.548-96	Гигиенические требования к микроклимату производственных помещений
СанПиН 2.2.1/2.1.1.1031-0	1 Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов
СанПиН 2.1.6.1032-01	Гигиенические требования к обеспечению качества атмосферного воздуха населенных мест
СанПиН 2.1.4.1074-01	Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения.
СанПиН 2.1.4.2496-09	Контроль качества Гигиенические требования к обеспечению безопасности
	истем горячего водоснабжения. Изменения к
C	анПиН 2.1.4.1074-01
СанПиН 4630-88	Правила охраны поверхностных вод от загрязнения
CH 2.2.4/2.1.8.562-96	Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки
CH 2.2.4/2.1.8.566-96	Производственная вибрация, вибрация в помещениях жилых и общественных зданий
СП 3.13130.2009	Система противопожарной защиты. Система оповещения и Управления эвакуацией людей при пожаре. Требования пожарной безопасности
СП 4.13130.2009	Система противопожарной защиты. Ограничение распространения пожара на объектах защиты. Требования
СП 8.13130.2009	к объемно-планировочным и конструктивным решениям Система противопожарной защиты. Источники наружного противопожарного водоснабжения. Требования
СП 10.13130.2009	пожарной безопасности Системы противопожарной защиты. Внутренний противо-
СП 12.13130.2009	пожарный водопровод. Требования пожарной безопасности. Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности. Требования
CO-153-34.21.122-2003 ГОСТ 12.2.002-80*	пожарной безопасности Инструкция по устройству молниезащиты зданий и сооружений Конвейеры. Общие требования безопасности
ГОСТ 2761-64*	Источники централизованного хозяйственно-питьевого водо-
	набжения. Гигиенические, технические требования и
ГОСТ 16860-88*	равила выбора Деаэраторы термические. Типы, основные параметры,
ГОСТ 20995-75*	риемка, методы контроля Котлы паровые стационарные давлением до 3,9 МПа.

Показатели качества питательной воды и пара

ГОСТ 21204-97 Горелки газовые промышленные. Общие технические

требования.

ГОСТ 23838-89 Здания предприятий. Параметры

РЭГА РФ-94 Руководство по эксплуатации гражданских аэродромов

Примечание – При пользовании настоящим сводом правил целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен) то при использовании настоящего свода правил следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены , то положение, в котором дана ссылка на него, применяется в части, не затративающей эту ссылку.

3 Термины и определения

Комельная - Комплекс зданий и сооружений с котельными установками и вспомогательным технологическим оборудованием, предназначенными для выработки тепловой энергии в целях теплоснабжения.

Комельная усмановка — котел агрегатированный горелочными, топочными тягодутьевыми устройствами, механизмами для удаления продуктов горения и использования теплоты уходящих газов (экономайзерами, воздухоподогревателями и т.д.) и оснащенный средствами автоматического регулирования, контроля и сигнализации процесса выработки теплоносителя заданных параметров.

Котельная блочно-модульная — отдельно стоящая котельная, состоящая из блоков технологического оборудования, размещенных в строительном модуле.

Потребитель теплоты — Здание или сооружение любого назначения, потребляющее теплоту для целей отопления, вентиляции и горячего водоснабжения, производственное или технологическое оборудование, технологический процесс в котором происходит с потреблением пара или перегретой воды.

Система транспорта теплоты - Комплекс трубопроводов и сооружений на них, доставляющих теплоту к потребителю.

Система распределения теплоты — Комплекс сооружений и технических устройств, распределяющих теплоту между потребителями.

Система теплоснабжения от вода, в которой вода, циркулирующая в тепловой сети частично или полностью, отбирается из системы для нужд горячего водоснабжения потребителей

Система теплоснабжения закрытая - Водяная система теплоснабжения, в которой вода, циркулирующая в тепловой сети, используется только как теплоноситель и из сети не отбирается.

Теплоснабжение — Комплекс систем, сооружений и устройств, предназначенных для выработки, транспорта и распределения теплоты в виде пара или перегретой воды для нужд отопления, вентиляции, кондиционирования и горячего водоснабжения зданий различного назначения, а также для производственных и технологических нужд промышленных предприятий.

Теплоснабжение централизованно - Теплоснабжение нескольких потребителей объединенных общей тепловой сетью от единого источника теплоты.

Теплоснабжение децентрализованное – Теплоснабжение одного потребителя от одного источника теплоты.

Энергетическая эффективность системы теплоснабжения — показатель, характеризующий полезно используемую потребителем физическую теплоту сжигаемого топлива.

4 Общие положения

4.1. Состав разделов проектной документации и требования к их содержанию должен соответствовать [1].

СП 89. 13330.2012

- 4.2. Оборудование и материалы, используемые при проектировании котельных, должны иметь сертификаты соответствия требованиям норм и стандартов России и в необходимых случаях, определенных установленным порядком, разрешение Ростехнадзора на их применение.
- 4.3. При проектировании котельных с котлами, подведомственными Ростехнадзору (с давлением пара более $0.17~\mathrm{M\Pi a}~(1.7~\mathrm{кгc/cm^2})$ и с температурой воды более $115^{0}\mathrm{C}$), кроме настоящих норм и правил необходимо соблюдать правила безопасности $\Pi E~10-574-03$
- 4.4. Проектирование новых и реконструируемых котельных должно осуществляться в соответствии с разработанными и согласованными в установленном порядке схемами теплоснабжения, или с обоснованиями инвестиций в строительство, принятыми в схемах и проектах районной планировки, генеральных планов городов, поселков и сельских поселений, проектов планировки жилых, промышленных и других функциональных зон или отдельных объектов [1].
- 4.5. Проектирование котельных, для которых не определен в установленном порядке вид топлива, не допускается. Вид топлива и его классификация (основное, резервное или аварийное) определяется по согласованию с топливоснабжающими организациями.
- 4.6. Котельные по целевому назначению в системе теплоснабжения подразделяются на:
 - центральные;
 - пиковые;
 - блочно-модульные.
 - 4.7. Котельные по назначению подразделяются на:

отопительные - для обеспечения теплом систем отопления, вентиляции, кондиционирования и горячего водоснабжения;

отопительно-производственные - для обеспечения теплом систем отопления, вентиляции, кондиционирования, горячего водоснабжения, технологического и производственного теплоснабжения;

производственные - для обеспечения теплотой систем технологического теплоснабжения.

- 4.8. Котельные по надежности отпуска теплоты потребителям относятся: к первой категории:
- котельные, являющиеся единственным источником теплоты системы теплоснабжения:
- котельные, обеспечивающие теплотой потребителей первой и второй категории, не имеющих индивидуальных резервных источников теплоты. Перечни потребителей по категориям устанавливаются в задании на проектирование;
 - ко второй категории остальные котельные.
- 4.9. В котельных с паровыми и пароводогрейными котлами общей установленной тепловой мощностью более 10 МВт с целью повышения надежности и энергоэффективности рекомендуется установка паровых турбогенераторов малой мощности (0,4 кВ) с паровыми противодавленческими турбинами для обеспечения покрытия электрических нагрузок собственных нужд котельных или предприятий, на территории которых они находятся. Отработавший пар после турбин может быть использован: на технологическое пароснабжение потребителей, для нагрева воды систем теплоснабжения, на собственные нужды котельной.

В водогрейных котельных, работающих на жидком и газообразном топливе, для этих целей допускается использование газотурбинных или дизельных установок.

4.10. Для теплоснабжения зданий и сооружений от блочно – модульных котельных следует предусматривать возможность работы оборудования котельной с автоматическим остановом и запуском.

- 4.11. Расчетная тепловая мощность котельной определяется суммой расчетных максимальных часовых расходов теплоты на отопление, вентиляцию и кондиционирование, расчетных средних часовых расходов теплоты на горячее водоснабжение и расчетных расходов теплоты на технологические цели. При определении расчетной производительности котельной должны учитываться также расходы теплоты на собственные нужды котельной и потери в котельной и в тепловых сетях с учетом энергетической эффективности системы.
 - 4.12. Расчетные расходы теплоты на технологические цели должны приниматься по проектным данным потребителей. При этом должна учитываться возможность несовпадения максимальных расходов теплоты для отдельных потребителей.
 - 4.13. Расчетные часовые расходы теплоты на отопление, вентиляцию, кондиционирование и горячее водоснабжение должны приниматься по проектным данным потребителей, при отсутствии таких данных определяться по рекомендациям СП 74.13330 с учетом требований [8].
- 4.14. Количество и единичную производительность котлов, устанавливаемых в котельной, следует выбирать по расчетной производительности котельной, проверяя режим работы котлов для летнего режима с учетом обеспечения стабильной работы котлов на минимально допустимой нагрузке; при этом в случае выхода из строя наибольшего по производительности котла в котельных первой категории оставшиеся должны обеспечивать отпуск теплоты потребителям первой категории:
- на технологическое теплоснабжение и системы вентиляции в количестве, определяемом минимально допустимыми нагрузками (независимо от температуры наружного воздуха);
- на отопление и горячее водоснабжение в количестве, определяемом режимом наиболее холодного периода.

В случае выхода из строя одного котла независимо от категории котельной количество теплоты, отпускаемого потребителям второй категории, в соответствии с СП 74.13330.

Количество котлов, устанавливаемых в котельных, и их производительность, определяются на основании технико-экономических расчетов.

В котельных должна предусматриваться установка не менее двух котлов, за исключением производственных котельных второй категории, в которых допускается установка одного котла.

- 4.15. В проектах котельных следует использовать поставляемые заводамиизготовителями котлы, экономайзеры, воздухоподогреватели, турбины с противодавлением и генераторами малой мощности (0,4 МВт), золоуловители и другое оборудование в блочном транспортабельном исполнении полной заводской и монтажной готовности.
 - 4.16. Проекты блоков вспомогательного оборудования с трубопроводами, системами автоматического контроля, регулирования, сигнализации и электротехническим оборудованием повышенной заводской готовности разрабатываются по заказу и заданиям монтажных организаций.
- 4.17. Открытая установка оборудования в различных климатических зонах допускается, если это допускается техническими условиями или инструкциями заводов (фирм) изготовителей и отвечает требованиям по шумовым характеристикам СП 51.13330 и СН 2.2.4/2.1.8.562-96.
- 4.18 Компоновка и размещение технологического оборудования котельной должны обеспечивать:
 - условия для механизации ремонтных работ;
- возможность использования при ремонтных работах напольных подъемнотранспортных механизмов и устройств.

Для ремонта узлов оборудования и трубопроводов массой более 50 кг следует предусматривать, как правило, инвентарные грузоподъемные устройства. При

невозможности использования инвентарных грузоподъемных устройств следует предусматривать стационарные грузоподъемные устройства (тали, тельферы, подвесные и мостовые краны).

- 4.19. В котельных следует предусматривать ремонтные участки или помещения для проведения ремонтных работ. При этом следует учитывать возможность выполнения работ по текущему ремонту указанного оборудования соответствующими службами промышленных предприятий или специализированными организациями.
- 4.20. Размещение котлов и вспомогательного оборудования в котельных, работающих с постоянным присутствием обслуживающего персонала, (расстояние между котлами и строительными конструкциями, ширина проходов) а также устройство площадок и лестниц для обслуживания оборудования в зависимости от параметров теплоносителя следует предусматривать в соответствии с требованиями ПБ 10-574-03. Для блочно-модульных котельных, работающих без постоянного присутствия обслуживающего персонала, размеры проходов, размещение лестниц и площадок для обеспечения свободного доступа при техническом обслуживании, монтаже и демонтаже оборудования, приборов и арматуры принимаются в соответствии с указаниями в паспортах и инструкциях по обслуживанию оборудования.
 - 4.21. Принятые в проекте основные технические решения должны обеспечивать:
 - надежность и безопасность работы оборудования;
 - максимальную энергетическую эффективность котельной;
 - экономически обоснованные затраты на строительство, эксплуатацию и ремонт;
 - требования охраны труда;
 - требуемые санитарно-бытовые условия для эксплуатационного и ремонтного персонала;
 - требования охраны окружающей среды.
- 4.22. Выбор и расчет толщины тепловой изоляции оборудования, трубопроводов, арматуры, газоходов, воздуховодов и пылепроводов следует производить в соответствии с требованиями СП 61.13330.

5. Генеральный план и транспорт

- 5.1 Генеральные планы котельных следует разрабатывать в соответствии с требованиями СП 18.13330 с учетом требований настоящих норм.
- 5.2. Проектирование железнодорожного, автомобильного и непрерывного транспорта котельных должно осуществляться в соответствии со СП 37.13330, СП 56.13330, СП 34.13330.
- 5.3. Выбор и отвод земельного участка для строительства котельной следует производить в соответствии с проектами планировки и застройки городов, поселков и сельских населенных пунктов, генеральными планами предприятий, схемами генеральных планов групп предприятий (промышленных узлов) и схемами теплоснабжения этих объектов в порядке, установленном [1].

Размеры земельных участков котельных, располагаемых в районах жилой застройки, следует принимать в соответствии с требованиями СП 4 2.13330.

Для котельных большой мощности, выполняющих функции тепловых станций, размеры земельных участков должны определяться проектом.

5.4. Компоновка генерального плана котельной должна решаться с учетом подходов железных и автомобильных дорог, выводов инженерных коммуникаций и наиболее рациональных технологических связей в увязке с генеральной схемой развития района (квартала, узла) и с учетом архитектурных требований.

Порядок согласования размещения котельной и ее сооружений, которые могут угрожать безопасности полетов воздушных судов или создавать помехи для нормальной работы радиотехнических средств аэродромных служб, а также размеры земельных участков следует принимать в соответствии с требованиями СП 43.13330.

- 5.5. При проектировании генерального плана котельной следует предусматривать возможность размещения укрупнительно-сборочных площадок, складских, а также временных сооружений, необходимых на период производства строительно-монтажных работ.
- 5.6. Склады топлива, реагентов, материалов, помещения лабораторий, а также вспомогательные помещения котельных, размещаемых на площадках промышленных предприятий, следует объединять с аналогичными зданиями, помещениями и сооружениями этих предприятий.
- 5.7. При проектировании котельных следует предусматривать главный корпус котельной, в случае необходимости, отдельно стоящее здание машинного зала для установки турбогенераторов, сооружения топливного хозяйства и золошлакоудаления, трансформаторную подстанцию, газорегуляторный пункт (ГРП), станцию сбора и перекачки конденсата, баки-аккумуляторы горячего водоснабжения, здание водоподготовки и реагентного хозяйства.

Указанные здания и сооружения допускается объединять, соблюдая требования раздела 13 настоящих норм.

Вместимость складов жидкого топлива не должна превышать величин, установленных СП 42.13330 для складов второй категории.

- 5.8. Территория котельной должна иметь ограждения за исключением случаев размещения ее на территории промышленного предприятия.
- 5.9. Вне пределов площадки котельной допускается располагать разгрузочные устройства топливоподачи, топливные склады, мазутные хозяйства, станции сбора и перекачки конденсата, баки-аккумуляторы горячего водоснабжения, насосные станции и резервуары противопожарного и питьевого водоснабжения, золошлакоотвалы с оформлением отводов земельных участков в установленном порядке.
- 5.10. Территория мазутного хозяйства должна иметь ограждение, если она располагается не на территории промышленного предприятия.
- 5.11. Баки-аккумуляторы горячего водоснабжения, резервуары противопожарного и питьевого водоснабжения должны иметь ограждения в соответствии с требованиями раздела 7 настоящих норм.
- 5.12. Систему водоотвода с территории котельной следует проектировать открытой, а в условиях застройки в увязке с сетями производственной и ливневой канализации предприятия или района, в котором размещается котельная по техническим условиям, получаемым в соответствии с требованиями [12].
- 5.13. Расстояния до жилых и общественных зданий от зданий и сооружений отдельно стоящей котельной, а также от оборудования, расположенного на открытых площадках, необходимо определять, исходя из требований СанПиН 2.2.1/2.1.1.1031-01.
- 5.14. Золошлакоотвалы должны проектироваться с учетом возможности комплексной переработки по безотходной технологии золы и шлака для нужд строительства. При невозможности использования золы и шлака для нужд строительства золошлакоотвалы следует проектировать, соблюдая следующие условия:

-размеры площадки золошлакоотвалов должны предусматриваться с учетом работы котельной не менее 25 лет с выделением первой очереди строительства, рассчитанной на эксплуатацию котельной в течение 10 лет;

- золошлакоотвалы следует размещать на непригодных для сельского хозяйства земельных участках, вблизи площадки котельной;
- для золошлакоотвалов следует использовать низины, овраги, заболоченные места, выработанные карьеры, с учетом перспективного развития района строительства.
- 5.15. Транспортирование шлака и золы к месту отвала должно производиться с учетом требований по охране окружающей среды [7]. На золошлакоотвалах следует предусматривать мероприятия по защите водоемов от выноса золы и шлака дождевыми и паводковыми водами, а также от ветровой эрозии.

- 5.16. Выбор схемы и системы транспортного обслуживания котельной производится в соответствии с СП 37.13330 на основании технико-экономического расчета исходя из ее расчетной производительности, места расположения с учетом очередности строительства и перспектив расширения.
- 5.17. При железнодорожном обслуживании режим подачи подвижного состава под разгрузку (весовая норма подачи, количество и размер ставок, продолжительность разгрузки, грузоподъемность вагонов и цистерн) устанавливаются по согласованию со станцией примыкания ОАО РЖД.

При установлении весовой нормы подачи должна учитываться вместимость склада топлива котельной и склада реагентов для водоподготовки, рассчитанные в соответствии с требованиями разделов соответственно13 и 9 настоящих норм.

5.18. Для котельных тепловой мощностью более 50 МВт при доставке топлива или вывозе золы и шлака автомобильным транспортом основной автомобильный въезд, связывающий площадку котельной с внешней сетью автомобильных дорог, должен иметь две полосы движения.

Для котельных тепловой мощностью 50 MBт и менее независимо от способа доставки топлива и вывоза золы и шлака следует предусматривать устройство подъездной автомобильной дороги с одной полосой движения.

- 5.19. В проектах должны предусматриваться возможности подъезда автомобильного транспорта к зданиям и сооружениям котельных и к оборудованию, устанавливаемому на открытых площадках.
 - 5.20. Дороги для автомобильного транспорта должны иметь твердые покрытия.
- 5.21. Для перевозки жидкого топлива и золошлаковых отходов следует предусматривать использование специальных автотранспортных средств.

Для учета принятого весового груза котельные должны быть оснащены железнодорожными или автомобильными весами.

6. Объемно-планировочные и конструктивные решения

- 6.1. При проектировании зданий и сооружений котельных следует руководствоваться требованиями СП 42.13330, СП 118.13330, СП 56.13330, СП 43.13330 и настоящих норм.
- 6.2. При проектировании котельных следует обеспечивать единое архитектурное и композиционное решение всех зданий и сооружений, простоту и выразительность фасадов и интерьеров, а также предусматривать применение экономичных конструкций и отделочных материалов.
- 6.3. Внешний вид, материалы и цвет наружных ограждающих конструкций котельных в соответствие с заданием на проектирование следует выбирать, учитывая архитектурный облик расположенных вблизи зданий и сооружений.
- 6.4. Ограждающие и конструктивные материалы для котельных, подлежащие обязательной сертификации, должны иметь техническое свидетельство, санитарногигиенический и пожарный сертификат соответствия требованиям российских норм и стандартов.
- 6.5. Геометрические параметры зданий и сооружений, размеры пролетов, шагов колонн и высот этажей должны соответствовать ГОСТ 23838 и ГОСТ 23837.

Размеры пролетов этажерок допускается принимать кратными 1,5 м.

- 6.6. Высоту встроенных антресолей или площадок под оборудование следует принимать по технологическим требованиям и назначать их кратными 0,3 м.
- 6.7. Объемно-планировочные и конструктивные решения зданий и сооружений котельных должны допускать возможность их расширения.
- 6.8. Для обеспечения возможности крупноблочного монтажа оборудования в стенах и перекрытиях зданий котельных должны предусматриваться монтажные проемы. Такие проемы должны предусматриваться со стороны расширения котельной.

- 6.9. Отметку чистого пола котельного зала следует принимать на 0,15 м выше планировочной отметки земли у здания котельной. Проектирование приямков в зоне расположения котла не допускается. Разрешается устраивать приямки под котлами, если такая необходимость вызвана условиями обслуживания котла. В этом случае должна быть предусмотрена вентиляция приямка. Устройство приямков допускается вне зоны размещения котлов.
- 6.10. В зданиях и помещениях котельных с явными избыточными тепловыделениями величина сопротивления теплопередаче наружных ограждающих конструкций не нормируется, за исключением ограждающих конструкций зоны с постоянным пребыванием работающих (на высоту 2,4 м от уровня рабочей площадки), для которых она выбирается в соответствии с требованиями СП 50.13330.2012.

Оконные переплеты выше указанного уровня следует проектировать одинарными.

- 6.11. При проектировании зданий и сооружений котельных следует руководствоваться номенклатурой унифицированных сборных железобетонных и металлических конструкций, соблюдая требования общеплощадочной унификации конструкций, изделий и материалов.
- 6.12. Несущие конструкции зданий и сооружений, как правило, следует проектировать исходя из условия выполнения работ всего нулевого цикла до начала монтажа каркаса и оборудования.
- 6.13. Перекрытия каналов, прокладываемых в помещениях котельных, следует предусматривать сборными в уровне чистого пола.

Перекрытия участков каналов, где по условиям эксплуатации необходим съем плит, масса съемного щита или плиты не должна превышать 50 кг.

- 6.14. Конструкции каналов и полов должны быть рассчитаны на нагрузки от перемещения оборудования от монтажных проемов до места его установки и должны обеспечивать возможность проезда грузоподъемных механизмов.
- 6.15. При проектировании котельных технологическое оборудование со статическими и динамическими нагрузками, не вызывающими в подстилающем бетонном слое пола напряжений, которые превышают напряжения от воздействия монтажных и транспортных нагрузок, следует устанавливать без фундаментов.

Для блочно-модульных котельных рекомендуется предусматривать технологическое оборудование, статические и динамические нагрузки которого позволяют устанавливать его без фундаментов.

6.16. Площадь и размещение оконных проемов в наружных стенах следует определять из условия естественной освещенности а также с учетом требований аэрации по обеспечению необходимой площади открывающихся проемов. Площадь оконных проемов должна быть минимально необходимой.

Коэффициент естественной освещенности при боковом освещении в зданиях и сооружениях котельных надлежит принимать равным 0,5, кроме помещений лабораторий, щитов автоматики, помещений центральных постов управления и ремонтных мастерских, для которых коэффициент естественной освещенности принимается равным 1,5.

Коэффициент естественной освещенности помещений отдельно стоящих станций водоподготовки следует принимать в соответствии со СП 31.13330.

- 6.17. Допускаемые уровни звукового давления и уровень звука на постоянных рабочих местах и у щитов контроля и управления следует принимать в соответствии с требованиями CH 2.2.4/2.1.8.562-96.
- 6.18 Котельные, размещаемые в селитебной зоне, должны обеспечивать уровень звукового давления в соответствии с требованиями СП 51.13330. При этом в проектах должны быть предусмотрены мероприятия по подавлению структурного шума и вибрации и невозможность их передачи строительными конструкциями в другие помещения.
- 6.19. Ворота котельной, через которые производится подача топлива, удаление золы и шлаков должны иметь тамбур или воздушную тепловую завесу в соответствии с СП 60.13330.

6.20. Внутренние поверхности ограждающих конструкций помещений топливоподачи, пылеприготовления и котельных залов при сжигании твердого топлива должны быть гладкими и окрашенными влагостойкими и огнестойкими красками в светлые тона. Имеющиеся выступы и подоконники должны выполняться с откосами под углом $60~^{0}$ С к горизонту и окрашиваться влагостойкими красками.

Полы указанных помещений должны проектироваться с учетом применения гидроуборки пыли.

- 6.21. Конвейерные галереи, в местах их примыкания к зданиям котельных не должны опираться на каркас и ограждающие конструкции здания.
- 6.22. Отапливаемые надземные конвейерные галереи должны располагаться над несущими конструкциями эстакад.
- 6.23. СН 2.2.4/2.1.8.562-96ы Бункеры для сырого угля и пыли следует проектировать в соответствии с требованиями СП 90.13330.
- 6.24. Для определения состава специальных бытовых помещений и устройств перечень профессий работников котельных по категориям работ следует принимать согласно обязательному приложению 6-1.
- 6.25. При количестве работающих в котельной в наиболее многочисленной смене более 30 человек состав бытовых помещений, помещений общественного питания и культурного обслуживания принимается в соответствии с СП 44.13330.

При количестве работающих в котельной в наиболее многочисленной смене от 6 до 30 человек должны предусматриваться следующие помещения: комната начальника котельной или конторское помещение, гардеробные с умывальниками, уборные, душевые, комната приема пищи, комната обогрева и кладовая инвентаря.

При числе работающих в котельной до 5 человек в смену не предусматривается комната начальника котельной (конторское помещение), а также умывальник в помещении гардеробной.

В котельных, работающих без постоянного присутствия обслуживающего персонала, следует предусматривать уборную и умывальную.

- 6.26 В отдельно стоящих зданиях насосных станций жидкого топлива с постоянным обслуживающим персоналом следует предусматривать гардеробную, уборную, душевую комнату обогрева. В отдельно стоящих зданиях водоподготовки следует предусматривать гардеробную, уборную, душевую.
- 6.27. В котельном зале, когда оборудование размещается на нескольких отметках (нулевой, площадке управления. промежуточных этажах) следует предусматривать ремонтные зоны для транспортировки и размещения при ремонте материалов и оборудования с нагрузкой на перекрытие 0,05-0,15 МПа.
- 6.28. Независимо от типа грузоподъемных механизмов для ремонтных работ в котельной должны предусматриваться лифты для обслуживающего персонала из расчета по одному грузопассажирскому лифту на 4 паровых котла с единичной производительностью 100 т/ч и более, либо 4 водогрейных котлов тепловой мощностью 116.3 МВт и более.
- 6.29. В котельных следует предусматривать помещение для складирования запчастей.

7 Пожарная безопасность

- 7.1. Мероприятия по пожарной безопасности, предусматриваемые при проектировании, котельных должны отвечать требованиям [5] и [9].
- 7.2 . Здания, помещения и сооружения котельных относятся по функциональной пожарной опасности по [5] к классу Φ 5.1.

Категория зданий и помещений котельных по взрывопожарной и пожарной опасности устанавливаются в соответствии с СП 12.13130.

Ориентировочные категории зданий и помещений котельных по взрывопожарной и пожарной опасности, а также требуемая огнестойкость зданий (помещений) и сооружений котельных приведены в рекомендуемом приложении 7-1 настоящих норм.

7.3. Здания отдельно стоящих и модульных котельных следует выполнять 1 и II степени огнестойкости класса пожарной опасности CO, III степени огнестойкости классов пожарной опасности CO и C1. Здания отдельно стоящих котельных, относящихся ко второй категории по надежности отпуска тепла потребителям, могут также выполняться IV степени огнестойкости класса пожарной опасности CO, C1 и C2.

Котельные должны примыкать к наружным ограждающим конструкциям здания.

- 7.4. При блокировке котельной с закрытым складом твердого топлива последний должен быть отделен противопожарной стеной 1-го типа с пределом огнестойкости не менее REI 150.
- 7.5. Надбункерные галереи топливоподачи должны быть отделены от котельных залов несгораемыми перегородками (без проемов) 2 типа с пределом огнестойкости не менее EI 15. Допускается, как исключение, устраивать в указанной перегородке дверной проем в качестве эвакуационного выхода через котельный зал. При этом сообщение между надбункерной галереей и котельным залом должно быть через тамбур. Предел огнестойкости ограждающих конструкций тамбура должен быть не менее REI 45, а предел огнестойкости дверей в перегородке и тамбуре не менее EI 30.
- 7.6. Наружные ограждающие конструкции наземной части зданий и помещений систем топливоподачи следует проектировать, исходя из того, что площадь легкосбрасываемых конструкций должна быть не менее $0.03~{\rm M}^2$ на $1~{\rm M}^3$ объема помещения.
- 7.7. При использовании твердого топлива в котельных залах, помещениях пылеприготовления площадь легкосбрасываемых конструкций должна определяться из расчета:
- при свободном объеме котельного зала до 10000 м^3 0.015 м^2 на 1 м^3 свободного объема;
- при свободном объеме котельного зала более 10000 м^3 $0,006 \text{ м}^2$ на 1 м^3 свободного объема.
- 7.8. При использовании жидкого и газообразного топлива в помещении котельной следует предусматривать легкосбрасываемые ограждающие конструкции из расчета 0.03 m^2 на 1 m^3 свободного объема помещения, в котором находятся котлы, топливоподающее оборудование и трубопроводы.
- 7.9. В качестве легкосбрасываемых конструкций следует, как правило, использовать остекление окон и фонарей. Применение для заполнения окон армированного стекла, стеклоблоков и стеклопрофилита не допускается.
- 7.10. При устройстве остекления, предусматриваемого в качестве легкосбрасываемых конструкций, площадь и толщина отдельных листов стекла (в оконном переплете) должна удовлетворять требованиям СП 56.13330.
- В помещениях топливоподачи и пылеприготовления окна должны быть металлическими.
- 7.11. При невозможности обеспечения требуемой площади остекления допускается в качестве легкосбрасываемых конструкций использовать конструкции из стальных, алюминиевых и асбестоцементных листов и эффективного утеплителя.
- 7.12. Электротехнические помещения следует проектировать с учетом требований "Правил устройства электроустановок".

Предел огнестойкости ограждающих конструкций помещений, в которых располагается электрооборудование с количеством масла в единице оборудования 60 кг и более, должен быть не менее REI 45.

Полы в электротехнических помещениях должны быть непылящими.

Оснащение помещений котельной первичными средствами пожаротушения должно соответствовать СП 9.13130.

Необходимость оснащения помещений котельной автоматической установкой пожарной сигнализации или автоматической установкой пожаротушения определяется согласно СП 5.13130.

8. Котельные установки

8.1. Для котельных в зависимости от назначения в качестве генераторов теплоты следует применять котельные установки с паровыми, пароводогрейными и водогрейными котлами. Производительность, КПД, аэродинамическое и гидравлическое сопротивления, эмиссия вредных выбросов и другие параметры работы котлов следует принимать по данным завода (фирмы) изготовителя.

Котельные, вырабатывающие в качестве теплоносителя воду с температурой более $95\,^{0}$ С, должны быть обеспечены двумя независимыми источниками электропитания.

Для котельных, имеющих паровые котлы с общей установленной тепловой мощностью более 10 MBт, в качестве второго независимого источника электропитания могут быть использованы турбогенераторы напряжением 0,4 кВ. Тип и количество турбогенераторов обосновываются расчетом.

Для котельных, работающих на жидком или газообразном топливе в качестве второго источника электропитания могут быть использованы электрогенераторы, с приводом от дизельных установок, работающих на жидком или газообразном топливе. При невозможности обеспечения двух источников электропитания температура теплоносителя должна быть принята не выше $95\,^{0}\mathrm{C}$.

- 8.2. Котлы и все вспомогательное оборудование котельных, подлежащие обязательной сертификации, должны иметь сертификаты соответствия, и, в случае необходимости, разрешение на применение, оформляемые в установленном порядке [4].
- 8.3. При проектировании котельных следует исходить из условий комплектной поставки котельных установок, включая топочные устройства, "хвостовые" поверхности нагрева, тягодутьевые установки; в случае необходимости электрогенераторов полной заводской готовности; золоуловителей; контрольно-измерительных приборов; средств регулирования и управления.

Котельные установки поставляются в заводской компоновке. Разработка новых компоновок котельных установок допускается только при отсутствии заводских решений, а также при реконструкции котельных. Изменение компоновки должно быть согласовано заводом-изготовителем.

- 8.4. В зависимости от вида используемого топлива и способа его сжигания используются котельные установки с:
 - -камерными топками для сжигания газообразного и жидкого топлива;
 - -камерными топками для сжигания твердого топлива в пылевидном состоянии;
 - -слоевыми топками для сжигания твердого топлива в слое;
 - -топками специальной конструкции для сжигания дров, древесных отходов, торфа, пилетов, изготовленных из этих материалов;
 - -факельно-слоевые топки (топки вихревые или с кипящим слоем) для сжигания твердого топлива с большим содержанием мелких фракций.
- 8.5. Степень оснащенности котла «хвостовыми» поверхностями нагрева определяется заводом изготовителем исходя из достижения оптимального значения КПД.
- В качестве «хвостовых» поверхностей нагрева используются воздухоподогреватели, поверхностные и контактные экономайзеры.

9 Газовоздушной тракт. Дымовые трубы. Очистка дымовых газов

9.1 Газовоздушной тракт

9.1.1. Проектирование газовоздушного тракта котельной следует производить в соответствии с требованиями Нормативного метода аэродинамического расчета котельных установок ЦКТИ им. И.И. Ползунова.

Аэродинамические сопротивления котлов принимаются по данным заводов (фирм) изготовителей.

- 9.1.2. Тягодутьевые установки (дымососы, вентиляторы) должны, как правило, предусматриваться индивидуальными к каждому котлу.
- 9.1.3. Групповые (для отдельных групп котлов) или общие (для всей котельной) тягодутьевые установки допускается применять при соответствующих технико-экономических обоснованиях при проектировании реконструкции котельных с применением котлов единичной тепловой мощностью менее 1 МВт.

При этом групповые или общие тягодутьевые установки при количестве котлов более двух следует проектировать с двумя дымососами и двумя дутьевыми вентиляторами, в том числе резервными, обеспечивающими расчетную производительность котлов.

- 9.1.4. Выбор тягодутьевых установок следует производить с учетом коэффициентов запаса по давлению и производительности согласно обязательного приложения 9-1 настоящих норм.
- 9.1.5. Для котельных установок, работающих под наддувом горелочные устройства поставляемые заводом изготовителем комплектно с дутьевым вентилятором долбны иметь данные по расчетному напору дымовых газов на выходе из котла.
- 9.1.6. При установке на котел двух дымососов и двух дутьевых вентиляторов производительность каждого из них выбирается равной 50%.
- 9.1.7. Для регулирования производительности проектируемых тягодутьевых установок следует предусматривать направляющие аппараты, индукционные муфты, частотно управляемые электроприводы и другие устройства, обеспечивающие экономичные способы регулирования
- 9.1.8. В зависимости от гидрогеологических условий и компоновочных решений котла наружные газоходы должны предусматриваться надземными или подземными. Ограждающие и несущие конструкции газоходов следует предусматривать из:
 - сборных железобетонных конструкций,
 - глиняного кирпича,
 - металла,
 - неметаллических материалов (пластмассы или керамики).

Выбор материала для изготовления газоходов должен производиться на основании соответствующего технико-экономического обоснования.

- 9.1.9. Для котельных, работающих на сернистом топливе, при возможности образования в газоходах конденсата следует предусматривать защиту от коррозии внутренних поверхностей газоходов.
- 9.1.10. Для котельных, оборудованных котельными установками, забирающими воздух непосредственно из котельного зала, для подачи воздуха на горение в ограждающих конструкциях следует предусматривать проемы, расположенные, как правило, в верхней зоне помещения котельной. Размеры живого сечения проемов определяются исходя из обеспечения скорости воздуха в них не более 1,5 м/с.
- 9.1.11. Газовоздухопроводы внутри котельной следует принимать стальными круглого сечения. Газовоздухопроводы прямоугольного сечения допускается предусматривать в местах примыкания их к прямоугольным элементам оборудования. На газовоздухопроводах должны быть предусмотрены устройства для установки контрольно-измерительных приборов и крепления изоляции.
- 9.1.12. На участках газоходов, в которых возможно отложение золы, следует предусматривать устройства для их очистки.

9.2. Дымовые трубы

9.2.1. Дымовые трубы должны сооружаться по отдельным проектам, в которых должны предусматриваться мероприятия, обеспечивающие безопасную эксплуатацию в соответствии с ПБ.

- 9.2.2. Для котельных необходимо предусматривать сооружение одной дымовой трубы. Допускаются две трубы и более при соответствующем обосновании. При количестве устанавливаемых котлов свыше трех и диаметре выходного отверстия дымовой трубы 3,6 м и более рекомендуется предусматривать многоствольную дымовую трубу.
- 9.2.3. Расчет дымовой трубы должен выполняться с учетом работы котельной при ее максимально возможной мощности с учетом расширения.

Расчет концентрации должен выполняться при работе котельной с тепловыми нагрузками, соответствующими средней температуре наиболее холодного месяца и летнему режиму.

- 9.2.4. Высота дымовых труб определяется на основании результатов аэродинамического расчета газовоздушного тракта и проверяется по условиям рассеивания в атмосфере вредных веществ в соответствии с требованиями действующих нормативных документов
 - 9.2.5. Дымовые трубы могут выполняться:
 - -железобетонными,
 - -кирпичными,
 - -металлическими,
 - -из термостойкого пластика,
 - -керамическими.

Выбор материала должен производиться на основании технико-экономических расчетов в зависимости от района строительства, габаритов трубы, вида сжигаемого топлива, вида тяги (принудительная или естественная).

- 9.2.6. Для котельных, работающих на естественной тяге, дымовые трубы, как правило, должны быть газоплотными и выполняться из газоплотных и термостойких материалов (металл, керамика, пластик). Диаметр устья таких труб определяется расчетом в зависимости от объема дымовых газов и оптимальной скорости их выхода из устья.
- 9.2.7. Для котельных, работающих с принудительной тягой, выбор материала дымовых труб должен производиться на основании технико-экономических расчетов Диаметр устья таких труб определяется расчетом в зависимости от объема дымовых газов, оптимальной скорости их выхода из устья и соблюдения требований п.9.19.
- 9.2.8. Для кирпичных и железобетонных труб не допускается положительное статическое давление дымовых газов на стенки газоотводящего ствола. Для этого должно выполняться условие R < 1

$$R = \frac{(\alpha + 8 i) \text{ ho}}{(V_B - V_F) \text{ do}}$$
, (9.1)

где: R - определяющий критерий;

 α - коэффициент сопротивления трению, для труб с кирпичной футеровкой, $\alpha = 0.05$;

і - постоянный уклон внутренней поверхности верхнего участка трубы;

 V_B - плотность наружного воздуха при расчетном режиме, кг/м³;

d_o - диаметр устья трубы, м;

 h_{o} - динамическое давление газа в устье трубы, кгс/м 2

$$h_0 = \begin{array}{c} Y_{\Gamma} \\ ---- \cdot W_0^2 \\ 2q \end{array}$$
 (9.2)

где: W_0 - скорость газов в устье трубы, м/с;

q - ускорение силы тяжести, M/c^2 ;

 V_{Γ} - плотность газа при расчетном режиме, $\kappa \Gamma/M^3$

Расчет должен производиться для режима, при котором отношение

 V_{Γ} ----- , γ_{B} - γ_{Γ}

максимально.

Где V_{Γ} - расход дымовых газов в газоотводящем стволе при полной нагрузке, м³/с;

- При R > 1 следует увеличить диаметр трубы или применить трубу специальной конструкции (с внутренним газонепроницаемым газоотводящим стволом с противодавлением между стволом и футеровкой).
- 9.2.9. Образование конденсата в стволах кирпичных и железобетонных труб, отводящих продукты сгорания топлива, как правило, не допускается при всех режимах работы.
- 9.2.10. Необходимость применения футеровки и тепловой изоляции для предотвращения выпадения конденсата и уменьшения термических напряжений определяется теплотехническим расчетом. При этом в трубах, предназначенных для удаления дымовых газов от сжигания сернистого топлива (независимо от содержания серы), следует предусматривать футеровку или антикоррозийное покрытие из кислотоупорных материалов по всей высоте ствола.
- 9.2.11. Расчет дымовой трубы и выбор конструкции защиты внутренней поверхности ее ствола от агрессивного воздействия среды должны выполняться, исходя из условий сжигания основного и резервного топлива.
- 9.2.12. При проектировании следует предусматривать защиту от коррозии наружных стальных конструкций кирпичных и железобетонных дымовых труб, и поверхностей стальных дымовых труб.
- 9.2.13. Подводящие газоходы в месте примыкания к дымовой трубе необходимо проектировать прямоугольной формы.
- 9.2.14. В сопряжении газоходов с дымовой трубой необходимо предусматривать температурно-осадочные швы или компенсаторы.
- 9.2.15. В нижней части дымовой трубы или фундаменте следует предусматривать лазы, люки для осмотра и очистки, а в необходимых случаях устройства для отвода конденсата.

При применении конденсационных котлов отвод конденсата дымовых труб должен быть совмещен с отводом конденсата котла через нейтрализатор.

9.2.16. Световые ограждения дымовых труб и наружная маркировочная окраска должны соответствовать требованиям РЭГА РФ-94.

9.3. Очистка дымовых газов

- 9.3.1. Котельные, предназначенные для работы на твердом топливе (угле, торфе, сланцах, древесных отходах и т.д.), должны быть оборудованы установками для очистки дымовых газов от золы. При применении твердого топлива в качестве аварийного установка золоуловителей не требуется.
- 9.3.2. Выбор типа золоуловителей производится на основании техникоэкономического сравнения вариантов установки золоуловителей различных типов в зависимости от объема очищаемых газов, требуемой степени очистки и компоновочных возможностей котельной.
 - 9.3.3. В качестве золоулавливающих аппаратов могут быть использованы:
 - при слоевом сжигании топлива дымососы-золоуловители, циклоны батарейные улиточные, батарейные циклоны с рециркуляцией газов:
 - при камерном сжигании топлива циклоны батарейные улиточные, циклоны батарейные с рециркуляцией газов, мокрые золоуловители со скрубберами Вентури и электрофильтры.

СП 89. 13330.2012

«Мокрые» золоуловители с низконапорными трубами Вентури с каплеуловителями могут применяться при наличии системы гидрозолошлакоудаления и устройств, исключающих сброс в водоемы вредных веществ, содержащихся в золошлаковой пульпе. Объемы газов принимаются при их рабочей температуре.

Температура дымовых газов за мокрыми золоуловителями при любых режимах работы котла должна быть не менее, чем на 15 °C выше точки росы очищенных газов.

- 9.3.4. Коэффициенты очистки золоулавливающих устройств принимаются по расчету и должны быть в пределах, установленных изготовителем оборудования или конструкторской организации, разработавшей установку.
- 9.3.5.Установку золоуловителей необходимо предусматривать на всасывающей стороне дымососов, как правило, на открытых площадках. При соответствующем обосновании допускается установка золоуловителей в помещении.
 - 9.3.6. Золоуловители предусматриваются индивидуальные к каждому котлу.

При работе котельной на твердом топливе золоуловители не должны иметь обводных газоходов.

9.3.7. Сухие золоуловители должны оборудоваться системой сбора и удаления сухой золы. Форма и внутренняя поверхность бункера золоуловителя должны обеспечивать полный спуск золы самотеком, при этом угол наклона стенок бункера к горизонту принимается $60^{\ 0}$ и в обоснованных случаях допускается не менее $55^{\ 0}$. Бункера золоуловителей должны иметь герметические затворы.

Сухие золоуловители должны иметь теплоизоляцию, обеспечивающую температуру стенки бункеров не менее, чем на $15\,^{0}$ С выше точки росы очищенных газов.

- 9.3.8. Расчетная скорость газов и конфигурация газоходов должны исключать отложение золы в них. Сечение газоходов следует определять, принимая скорость газов по рекомендациям завода изготовителя в зависимости от физических свойств золы (абразивности, дисперсности, слипаемости и др.). На газоходах должны предусматриваться люки для ревизии.
- 9.3.9. «Мокрые» искрогасители следует применять в котельных, предназначенных для работы на древесных отходах. После золоуловителей искрогасители не устанавливаются.

10. Трубопроводная арматура

- $10.1.~\rm B$ котельных с котлами давлением выше 0,17 МПа при температуре выше $115~^{0}\rm C$ (независимо от давления) трубы, материалы и арматура должны удовлетворять требованиям ПБ 10-573-03 .
- 10.2. В котельных с паровыми котлами давлением $0.17~\mathrm{M\Pi a}$ и водогрейными котлами с температурой воды $115~\mathrm{^{0}C}$ и ниже выбор труб и арматуры в зависимости от параметров транспортируемой среды должен производиться в соответствии с требованиями ГОСТов и технических условий изготовителя.
- 10.3. Магистральные трубопроводы, к которым присоединяются паровые котлы, следует предусматривать одинарными секционированными или двойными в котельных первой категории. В остальных случаях секционирование определяется требованиями задания на проектирование.

Магистральные питательные трубопроводы паровых котлов давлением свыше 0,17 МПа следует проектировать двойными в случаях, предусмотренных ПБ 10-574-03, для котельных первой категории. В остальных случаях эти трубопроводы могут предусматриваться одинарными несекционированными.

Магистральные подающие и обратные трубопроводы систем теплоснабжения, к которым присоединяются водогрейные котлы, водоподогревательные установки и сетевые насосы, должны предусматриваться одинарными секционированными или двойными для котельных первой категории независимо от расхода тепла и для котельных второй категории — при расходе тепла 350 МВт и более. В остальных случаях эти трубопроводы должны быть одинарными несекционированными.

Магистральные паропроводы, питательные трубопроводы, подающие и обратные трубопроводы систем теплоснабжения для котельных с паровыми котлами с давлением пара до 0,17 МПа и температурой воды до 115 0 C независимо от категории принимаются одинарными несекционированными.

- 10.4. При установке котлов с индивидуальными питательными насосами питательные трубопроводы должны предусматриваться одинарными.
- 10.5. Трубопроводы пара и воды от магистралей к оборудованию и соединительные трубопроводы между оборудованием должны предусматриваться одинарными.
- 10.6. На питательном трубопроводе к котлу с давлением пара до 0,17 МПа должны быть предусмотрены обратный клапан и запорное устройство.
- 10.7. Диаметры паропроводов следует принимать, исходя из максимальных часовых расчетных расходов теплоносителя и допускаемых потерь давления.

При этом скорости пара должны приниматься не более:

для перегретого пара при диаметре труб, мм,

до 200 - 40 м/с;

свыше 200 - 70 м/с;

для насыщенного пара при диаметре труб, мм,

для 200 - 30 м/с;

свыше 200 - 60 м/с.

- 10.8. Трубопроводы в котельных должны прокладываться с уклоном 0,002, паропроводы с уклоном 0,004.
- 10.9. Отбор среды от паропроводов должен производиться в верхней части трубопровода.
- 10.10. Отключаемые участки, а также нижние и концевые точки паропроводов должны иметь устройства для периодической продувки и отвода конденсата: штуцера с вентилями, конденсатоотводчики. Во избежание обратного тока при остановке системы за конденсатоотводчиком следует устанавливать обратный клапан.
- 10.11. На спускных, продувочных и дренажных линиях трубопроводов с давлением пара до $0.17~\rm M\Pi a$ и температурой воды до $115~\rm ^0C$ следует предусматривать установку одного запорного вентиля (задвижка); на трубопроводах с давлением пара более $0.17~\rm M\Pi a$ и температурой воды более $115~\rm ^0C$ в соответствии с ΠE 10-573-03.
- 10.12. Для периодического спуска воды или периодической продувки котла, дренажа трубопроводов, паропроводов и конденсатопроводов следует предусматривать в нижних частях трубопроводов устройства для спуска воды (спускники) и общие сборные спускные и продувочные трубопроводы, а в высших точках трубопроводов устройства для спуска воздуха (воздушники).
- 10.13. Минимальные расстояния в свету между поверхностями теплоизоляционных конструкций смежных трубопроводов, а также от поверхности тепловой изоляции трубопроводов до строительных конструкций зданий следует принимать в соответствии с рекомендуемым приложением 10-1.
- 10.14. Соединение всех трубопроводов, кроме гуммированных, должно предусматриваться на сварке. На фланцах допускается присоединение трубопроводов к арматуре и оборудованию.

Применение муфтовых соединений допускается на трубопроводах пара и воды четвертой категории с условным проходом не более 100 мм, а также для котельных с котлами с давлением пара до 0,17 МПа и температурой воды до 115 0 С. Для трубопроводов, расположенных в пределах котлов, с давлением пара более 0,17 МПа и температурой более 115 0 С применение муфтовых соединений может предусматриваться только в соответствии с ПБ 10-574-03.

10.15. Для установки измерительных и отборных устройств на трубопроводах должны предусматриваться прямые участки длиной, определяемой расчетом.

10.16. Расчет пропускной способности и количества предохранительных устройств на котлах и вспомогательном оборудовании должны определяться в соответствии с требованиями ПБ 10-574-03.

Поставка предохранительных устройств должна производиться изготовителями оборудования.

При установке в котельных нескольких водогрейных котлов без барабанов вместо предохранительных устройств, на котлах допускается установка двух предохранительных устройств диаметром не менее 50 мм на сборном трубопроводе от котлов.

Диаметр каждого предохранительного устройства принимается из расчета для котла наибольшей производительности и определяется по формулам:

при установке котлов с естественной циркуляцией

$$d = \frac{6,96Q}{10^6 \text{ nh}}$$
 (10.1)

при установке котлов с принудительной циркуляцией

$$d = \frac{3,48Q}{10^6 \text{ nh}}$$
 (10.2)

В формулах (10.1) и (10.2):

d - диаметр проходного сечения устройства, см;

Q - максимальная тепловая мощность котла, Вт;

n - количество предохранительных устройств, шт.;

h - высота подъема устройства, см.

При установке предохранительных устройств на сборном трубопроводе воды от котлов следует предусматривать обводной трубопровод с обратным клапаном у запорного устройства каждого котла.

Диаметры обводных трубопроводов и обратных клапанов принимаются по расчету, но не менее 40 мм для котлов тепловой мощностью менее 0,27 МВт и не менее 50 мм - для котлов тепловой мощностью 0,27 МВт и более.

Трубы от предохранительных устройств должны выводиться за пределы котельной и иметь устройства для отвода воды. Площадь поперечного сечения выхлопной трубы должна быть не менее двойной площади поперечного сечения предохранительного устройства.

10.17. Оснащение запорных устройств котельных электрическими приводами следует производить в зависимости от степени автоматизации технологического процесса, требований дистанционного управления и безопасности эксплуатации по заданию на проектирование.

11. Вспомогательное оборудование

- 11.1. Выбор вспомогательного оборудования котельной должен производиться по расчетной тепловой схеме и составленному пароводяному балансу с компенсацией потерь воды, пара, конденсата добавочной химически обработанной воды.
- 11.2. В проектах котельных необходимо предусматривать устройства для удаления растворенных в воде газов (деаэрацию добавочной воды и всех потоков конденсата, поступающих в котельную).
- 11.3. Система сбора и возврата конденсата должна приниматься в соответствии со СП 74.13330. В зависимости от качества и давления конденсата, возвращаемого от внешних потребителей, следует предусматривать его подачу в деаэраторы или на станцию очистки конденсата. Конденсат от пароводяных подогревателей котельных должен направляться непосредственно в деаэраторы питательной воды.
- 11.4. Для деаэрации питательной воды паровых котлов следует, как правило, предусматривать деаэраторы атмосферного давления. Применение деаэраторов повышенного давления допустимо при соответствующем обосновании.

В котельных с водогрейными котлами с температурой нагрева воды не ниже $130~^{0}$ С для деаэрации подпиточной воды следует предусматривать вакуумные деаэраторы.

В котельных с паровыми и водогрейными котлами тип деаэратора (вакуумный или атмосферный) для подпитки тепловой сети должен определяться на основании технико-экономических расчетов.

- 11.5. Для котельных с чугунными водогрейными котлами и натрийкатионированием необходима термическая или химическая деаэрация (сульфитирование) воды, а при расходе подпиточной воды менее 50 т/ч и магнитной обработке или дозировании комплексонов термическую деаэрацию предусматривать не следует.
- 11.4. Суммарная производительность деаэраторов должна обеспечивать деаэрацию:
- питательной воды паровых котлов по установленной производительности котельной (без учета резервных котлов);
 - подпиточной воды при закрытых и открытых системах теплоснабжения.
- 11.5. В проектах котельных с паровыми котлами при открытых и закрытых системах теплоснабжения должны предусматриваться, как правило, отдельные деаэраторы питательной и подпиточной воды.

Общий деаэратор питательной и подпиточной воды допускается предусматривать при закрытых системах теплоснабжения.

- 11.6. Два и более деаэратора питательной воды следует предусматривать:
- в котельных первой категории;
- при значительных колебаниях нагрузок (летних, ночных);
- при компоновке котлов с соответствующим вспомогательным оборудованием в виде блок-секций;
- при нагрузках, которые не могут быть обеспечены одним деаэратором;
- при установке котлов с рабочим давлением более 1,4 МПа.
- 11.7. При установке в котельной одного деаэратора питательной воды и невозможности останова котельной на время ремонта деаэратора следует предусматривать бак атмосферного давления для сбора воды и конденсата, поступающих в деаэратор.

Вместимость бака должна быть не менее пятиминутной производительности деаэратора, подключение бака – непосредственно к питательным насосам.

11.8. При параллельном включении двух и более деаэраторов атмосферного или повышенного давления следует предусматривать уравнительные линии по воде и пару, а также обеспечивать распределение воды, конденсата и пара пропорционально производительности деаэраторов.

Параллельное включение вакуумных деаэраторов, как правило, не предусматривается.

- 11.9. Для создания разрежения в вакуумных деаэраторах следует применять, как правило, вакуум-насосы, а также водоструйные или пароструйные эжекторы. Для водоструйных эжекторов следует предусматривать насосы и баки рабочей воды. Вместимость баков рабочей воды должна быть не менее трехминутной производительности деаэратора.
- 11.10. При вакуумной деаэрации подпиточной воды нужно предусматривать установку промежуточных баков деаэрированной воды. При наличии необходимых высотных отметок возможна схема со сливом деаэрированной воды непосредственно в баки-аккумуляторы.
- 11.11. Перед деаэраторами подпиточной воды следует предусматривать максимально возможный подогрев умягченной воды.
- 11.12. Основные параметры термических деаэраторов, полезные вместимости деаэраторных баков и величины подогрева воды в деаэраторах должны соответствовать ГОСТ 16860-77.

СП 89. 13330.2012

- 11.13. Высоту установки деаэраторов и конденсатных баков следует принимать исходя из условия создания подпора у центробежных насосов, исключающего возможность вскипания воды в насосах.
- 11.14. При определении производительности питательных насосов следует учитывать расходы:
 - на питание всех рабочих паровых котлов;
 - на непрерывную продувку котлов;
 - на редукционно-охладительные и охладительные установки.
- 11.15. Для питания котлов с давлением пара 0,17 МПа и менее следует предусматривать не менее двух питательных насосов, в том числе один резервный.

Допускается не предусматривать резервный питательный насос, если по техническим условиям изготовителя питание котлов может осуществляться от водопровода, при этом давление воды перед котлами должно превышать рабочее давление пара в котле не менее чем на 0,1 МПа. В этом случае на водопроводе перед котлом должны быть предусмотрены запорная арматура и обратный клапан.

Для питания котлов с давлением пара более $0,17~\mathrm{M\Pi a}~(1,7~\mathrm{krc/cm}^2)$ следует предусматривать:

- насосы с паровым приводом (поршневые бессмазочные, паровые объемные машины типа ПРОМ, турбонасосы) с использованием отработанного пара; при этом следует предусматривать резервный насос с электроприводом;
- насосы только с электроприводом при наличии двух независимых источников питания электроэнергией, в том числе от электрогенераторов собственных нужд;
- насосы с электрическим и паровым приводами при одном источнике питания электроэнергией; для питания котлов с давлением пара не более 0,5 МПа (5 кгс/см²) или котлов производительностью до 1 т/ч допускается применением питательных насосов только с электроприводом при одном источнике питания электроэнергией.
- 11.16. Количество и производительность питательных насосов выбираются с таким расчетом, чтобы в случае остановки наибольшего по производительности насоса оставшиеся обеспечили подачу воды в количестве, определенном в соответствии с п.11.14 настоящих норм.

В котельных второй категории, в которых предусматриваются котлы в облегченной или легкой обмуровке с камерным сжиганием топлива, при условии что тепло, аккумулированное топкой, не может привести к перегреву металла элементов котла при выходе из строя питательного насоса и автоматическом отключении подачи топлива в топку, суммарная производительность питательных насосов определяется исходя из требований п.11.14 настоящих норм (без учета возможной остановки одного из питательных насосов).

В этом случае количество насосов должно приниматься не менее двух (без резервного).

- 11.17. Присоединение питательных насосов допускающих их параллельную работу, следует предусматривать к общим питательным магистралям. При применении насосов, не допускающих их параллельную работу, следует предусматривать возможность питания котлов по раздельным магистралям.
 - 11.18. Производительность водоподогревательных установок следует определять:
- при наличии баков-аккумуляторов горячей воды по сумме расчетных максимальных часовых расходов тепла на отопление и вентиляцию, расчетных средних часовых расходов тепла на горячее водоснабжение и расчетных расходов тепла на технологические цели;
- водоподогреватели для систем горячего водоснабжения котельных при отсутствии баков аккумуляторов и закрытых системах теплоснабжения с централизованными установками горячего водоснабжения по расчетному максимальному расходу тепла на горячее водоснабжение.

При определении расчетной производительности должны учитываться также

расходы тепла на собственные нужды котельной и потери тепла в котельной и в тепловых сетях.

- 11.19. Количество водоподогревателей для систем отопления и вентиляции должно быть не менее двух. Резервные подогреватели не предусматриваются; при этом в случае выхода из строя наибольшего по производительности подогревателя в котельных первой категории оставшиеся должны обеспечивать отпуск тепла потребителям:
- на технологическое теплоснабжение и системы вентиляции в количестве, определяемом минимально допустимыми нагрузками (независимо от температуры наружного воздуха);
- на отопление в количестве, определяемом режимом наиболее холодного месяца;
- 11.20. При отпуске воды различных параметров для отопления и вентиляции, бытового и технологического горячего водоснабжения допускается предусматривать отдельные водоподогревательные установки.
- 11.21. Выбор сетевых и подпиточных насосов для открытых и закрытых систем теплоснабжения следует производить в соответствии с СП 74.13330.
- 11.22. При открытой системе горячего водоснабжения количество насосов определяется в соответствии с режимом работы системы горячего водоснабжения, необходимой производительностью и напором.
- 11.23. При необходимости поддержания постоянной температуры воды на входе в водогрейный котел следует предусматривать установку рециркуляционных насосов, которые должны входить в комплект поставки котла заводом изготовителем. Резервные рециркуляционные насосы не предусматриваются.
- 11.24. В котельных для открытых систем теплоснабжения и для установок централизованных систем горячего водоснабжения, водоподогреватели которых выбраны по расчетным средним часовым нагрузкам, должны предусматриваться бакиаккумуляторы горячей воды, а для закрытых систем теплоснабжения баки запаса подготовленной подпиточной воды.

Выбор вместимостей баков-аккумуляторов и баков-запаса производится в соответствии с СП 74.13330.

Для повышения надежности работы баков-аккумуляторов следует предусматривать:

- антикоррозионную защиту внутренней поверхности баков путем применения герметизирующих жидкостей, защитных покрытий или катодной защиты и защиту воды в них от аэрации;
 - заполнение баков только деаэрированной водой с температурой не выше $95\,^{0}$ C;
- оборудование баков переливной и воздушной трубами; пропускная способность переливной трубы должна быть не менее пропускной способности труб, подводящих воду к баку;
- конструкции опор на подводящих и отводящих трубопроводах бака-аккумулятора исключающие передачу усилий на стенки и днища бака от внешних трубопроводов и компенсирующие усилия, возникающие при осадке бака;
- установку электрифицированных задвижек на подводе и отводе воды; все задвижки (кроме задвижек на сливе воды и герметика) должны быть вынесены из зоны баков;
- оборудование баков- аккумуляторов аппаратурой для контроля за уровнем воды и герметика, сигнализацией и соответствующими блокировками;
- устройство в зоне баков лотков для сбора, перелива и слива бака с последующим отводом охлажденной воды в канализацию.
- 11.25. Расстояние от ограждения баков- аккумуляторов до производственных зданий и открыто установленного оборудования должно быть не менее расстояния, обеспечивающего свободный проезд специального автотранспорта (автокраны, пожарные машины и т.д.).

- 11.26. При необходимости в котельных следует предусматривать закрытые баки для сбора дренажей паропроводов и конденсата от оборудования собственных нужд котельной.
- 11.27. Для снижения давления насыщенного пара паровых котлов до требуемых потребителями параметров, рекомендуется использовать турбины с противодавлением 0,4 кВ Типы и количества турбин определяются расчетом и техническими условиями внешних потребителей пара.

Необходимость применения редукционных охладительных установок (РОУ), редукционных установок (РУ) и охладительных установок (ОУ) определяется расчетом, при этом резервные РОУ, РУ и (ОУ) следует предусматривать только в котельных первой категории по требованию задания на проектирование.

12. Водоподготовка и водно-химический режим. Общие требования

12.1. В проекте водоподготовки должны предусматриваться решения по обработке воды для питания паровых котлов, систем теплоснабжения и горячего водоснабжения, а также по контролю качества воды и пара.

Для блочно-модульных котельных необходимо предусматривать блочную установку водоподготовки, которая выбирается в зависимости от качества исходной воды и требований к качеству подпиточной воды.

- 12.2. Водно-химический режим работы котельной должен обеспечивать работу котлов, пароводяного тракта, теплоиспользующего оборудования и тепловых сетей без коррозионных повреждений и отложений накипи и шлама на внутренних поверхностях, получение пара и воды требуемого качества.
- 12.3. Метод обработки воды, состав и расчетные параметры сооружений водоподготовки следует выбирать на основании сравнения технико-экономических показателей вариантов в зависимости от требований к качеству пара, питательной и котловой воды паровых и водогрейных котлов, к качеству воды для систем теплоснабжения и горячего водоснабжения, количества и качества возвращаемого конденсата, количества и качества отводимых сточных вод, а также от качества исходной воды. Выбор метода обработки воды, подбор оборудования должна производить специализированная организация.
- 12.4. Показатели качества исходной воды для питания паровых котлов, производственных потребителей и подпитки тепловых сетей закрытых систем теплоснабжения, необходимо выбирать на основании анализов, выполненных в соответствии с ГОСТ 2761.
- 12.5. Качество воды для подпитки тепловых сетей открытых систем теплоснабжения и систем горячего водоснабжения должно отвечать требованиям СаеНПиН 2.1.4.1074.
- 12.6. Качество воды для заполнения и подпитки тепловых сетей закрытых систем теплоснабжения и контуров циркуляции водогрейных котлов должно отвечать требованиям ПБ 10-574-03, а также требованиям инструкций заводов-изготовителей по эксплуатации водогрейных котлов.
- 12.7. Показатели качества пара, питательной воды паровых котлов и воды для впрыскивания при регулировании температуры перегретого пара должны соответствовать ГОСТ 20995.
- 12.8. Показатели качества питательной воды паровых котлов с естественной циркуляцией и давлением не более 0,017 МПа должны удовлетворять требованиям ПБ 10-574-03.
- 12.9. Требования к качеству котловой (продувочной) воды паровых котлов по общему солесодержанию (сухому остатку) следует принимать по данным заводовизготовителей котлов.

12.10. Для жаротрубных паровых и водогрейных котлов требования к качеству питательной и подпиточной воды устанавливаются заводами (фирмами) изготовителями.

Продувка котлов

- 12.11. При расчетной величине продувки менее 2 % следует предусматривать периодическую продувку, при расчетной величине продувки \geq 2 % кроме периодической следует предусматривать непрерывную продувку.
- 12.12. Величину непрерывной продувки следует принимать по техническим условиям на поставку и паспортам котлов. Как правило, это значение не должно быть менее 0.5~% и не более 10~% для котлов давлением пара до $1.4~\mathrm{M\Pi a}, 5~\%$ для котлов давлением более $1.4~\mathrm{M\Pi a}$.
- 12.13. При величине непрерывной продувки более 500 л/ч для использования теплоты непрерывной продувки следует предусматривать сепараторы. При величине менее 500 кг/ч следует обосновывать экономическую целесообразность использования теплоты продувочной воды.
- 12.14. Периодическую продувку следует предусматривать не реже одного раза в смену поочередно из штуцеров нижних коллекторов длительностью не более 0,5 минуты из каждого штуцера с интенсивностью не более 500 л/мин.

Оборудование и сооружения водоподготовительных установок

- 12.15. При выборе оборудования для обработки исходной воды, а также оборудования реагентного хозяйства, кроме указаний настоящего раздела следует руководствоваться требованиями СП 31.13330.
- 12.16. Расчетная производительность водоподготовительных установок должна определяться:
- для паровых котлов суммой наибольших потерь пара и конденсата у технологических потребителей и в наружных сетях, потерь воды с продувками котлов, потерь пара и конденсата в котельной и собственных нужд установки;
- для подпитки тепловых сетей закрытых и открытых систем теплоснабжения в соответствии с требованиями СП 74.13330 и СП 32.13330.
- 12.17. Расходы воды на собственные нужды определяются расходами воды на регенерацию фильтров последующих стадий водоподготовки (учитывая несовпадение по времени процессов регенерации фильтров) и расходами осветленной воды на собственные нужды котельной.
- 12.18. Оборудование водоподготовки необходимо выбирать по ее расчетной производительности, определенной в соответствии с п.п.12.15 и 12.16 настоящих норм.
- 12.19. Подогреватели исходной воды следует выбирать из расчета нагрева воды до температуры не ниже $15\,^{0}\mathrm{C}$, но не выше температуры допускаемой по техническим условиям на предусматриваемые ионообменные материалы.

При установке осветлителей колебания температуры исходной воды допускается в пределах 1 0 C.

- 12.20. Для реагентов следует предусматривать, как правило, склады «мокрого» хранения. При расходе реагентов до 3 т в месяц допускается их хранение в сухом виде в закрытых складах.
- 12.21. Высоту резервуаров для коагулянта, поваренной соли, кальцинированной соды и фосфатов, следует принимать не более 2 м, для извести не более 1,5 м. При механизации загрузки и выгрузки реагентов высота резервуаров может быть соответственно увеличена до 3,5 м и 2,5 м. Заглубление резервуаров более чем на 2,5 м не допускается.
- 12.22. Хранение флокулянта необходимо предусматривать в соответствии с технологической документацией предприятия изготовителя.
 - 12.23. Вместимость складов хранения реагентов следует принимать при доставке:

- автотранспортом из расчета 10-суточного расхода;
- железнодорожным транспортом месячного расхода;
- по трубопроводам суточного расхода.
- 12.24. Вместимость склада флокулянта должна определяться из расчета хранения запаса для работы водоподготовки в течение не менее двух недель.
- 12.25. При доставке реагентов железнодорожным транспортом необходимо предусматривать возможность приема одного вагона или цистерны; при этом к моменту разгрузки на складе должен учитываться 10-суточный запас реагентов. Запас реагентов определяется исходя из максимального суточного расхода.
- 12.26. Склад фильтрующих материалов необходимо рассчитывать на 10% объема материалов, загружаемых в осветлительные и катионитные фильтры, и на 25% объема материалов, загружаемых в анионитные фильтры.
- 12.27. Катиониты и аниониты надлежит хранить в упаковке изготовителя в закрытых складских помещениях при температуре не менее $2\,^{0}$ C на расстоянии не менее 1 м от отопительных приборов.
- 12.28. Вспомогательное реагентное оборудование для использования кислот, натрий гидрооксида, аммиакосодержащих веществ, включающее мерники, эжекторы, насосы, расходные баки, и т.п., располагающееся в здании котельной или в отдельно стоящем здании водоподготовки, должно выделяться, как правило, в отдельные помещения каждый реагент отдельно.

Допускается размещать оборудование для использования кислот и натрий гидроксида, растворов коагулянта и известкового молока в одном помещении. Каждое помещение склада кислоты не должно содержать более 50 т реагента.

12.29. Емкости хранения кислот и щелочей, как правило, должны размещаться в зданиях, заглублять емкости не допускается. Допускается размещение емкостей серной кислоты вне здания, но под навесом. Обязателен (при размещении емкостей вне здания) наружный обогрев емкостей с обеспечением температуры внутри емкости 10^{-0} С (оптимально) не допускается летний нагрев стенки емкости более 30^{-0} С.

Отвод реагентов и их растворов из емкостей необходимо предусматривать через верхний штуцер.

12.30. Под емкостями, мерниками, эжекторами и другим оборудованием кислот и щелочей должен предусматриваться поддон вместимостью не менее 0,9 вместимости наибольшего аппарата. Поддон должен устраиваться и под участком железнодорожного пути или площадкой автотранспорта, на которых предусматривается разгрузка реагентов.

Вместимость поддонов под участком железнодорожного пути и площадкой автотранспорта должна рассчитываться только на вместимость трубопроводов в пределах площадки разгрузки реагентов.

- 12.31. Наружные трубопроводы кислот и щелочей должны быть только надземными с обеспечением условий, предотвращающих замерзание реагентов внутри трубопроводов (тепловая изоляция, "спутники").
- 12.32. Все емкости должны быть оборудованы дренажными и переливными устройствами и устройствами для выпуска или впуска воздуха (воздушниками).
- 12.33. Трубопроводы для выпуска воздуха из емкостей с кислотами и щелочами должны возвышаться над кровлей здания не менее чем на 3 м, при расположении емкостей вне здания на высоте не менее 5 м над площадкой обслуживания.
- 12.34. Трубопроводы концентрированных кислот и щелочей следует предусматривать только из стальных бесшовных или стальных футерованных труб.
- 12.35. В проектах следует предусматривать защиту от коррозии оборудования и трубопроводов, подвергающихся воздействию коррозионной среды, или принимать их в коррозионно-стойком исполнении.
- 12.36. Контроль качества пара и воды, как правило, следует осуществлять в специализированных лабораториях промышленных предприятий или районных служб

эксплуатации систем теплоснабжения. При невозможности использования для этих целей указанных лабораторий необходимый контроль следует предусматривать в котельных.

Объем химического контроля качества воды для тепловых сетей открытых систем теплоснабжения и систем горячего водоснабжения должен соответствовать требованиям действующей нормативной документации.

Обработка конденсата

12.37. Установку очистки производственного конденсата от загрязнений следует предусматривать при величинах загрязнений не более, мг/л:

взвешенные вещества	300
соединения железа	70
масла	20
смолы	2
фенолы, бензолы, нафталины (суммарно)	10

При величинах загрязнений конденсата более указанных и при невозможности обработки конденсата совместно с исходной водой, а также в случаях технико-экономической нецелесообразности очистки конденсата прием конденсата в котельную предусматривать не следует.

12.38. При проектировании, как правило, следует предусматривать использование конденсата от установок мазутоснабжения котельных для питания котлов, при необходимости - с очисткой от мазута. В отдельных случаях, обоснованных технико-экономическими расчетами, допускается предусматривать сброс конденсата в канализацию после соответствующей очистки.

13. Топливное хозяйство

13.1. Виды топлива основного, резервного и аварийного, а также необходимость резервного или аварийного вида топлива для котельных устанавливаются в задании на проектирование с учетом категории котельной по согласованию с местными органами Управления топливно-энергетического хозяйства и с топливоснабжающими организациями.

Лимиты на годовое потребление топлива в установленном порядке оформляются заказчиком в соответствии с расчетными данными проектной организации.

- 13.2. При разработке проектов котельных, для которых определены основное и резервное топливо, эти виды топлива следует рассматривать как равнозначные.
- 13.3. Вид топлива для растопки и "подсвечивания" котлов с камерными топками для сжигания твердого топлива следует предусматривать исходя из требований завода-изготовителя.
- 13.4. Расчетный часовой расход топлива котельной определяется, исходя из работы всех установленных рабочих котлов при их номинальной тепловой мощности с учетом минимальной теплотворной способности заданного вида топлива.
 - 13.6. Суточный расход топлива определяется:
- для паровых котлов исходя из режима их работы при суммарной расчетной тепловой мощности;
- для водогрейных котлов исходя из 24 часов их работы при покрытии тепловых нагрузок, рассчитанных по средней температуре самого холодного месяца.

Твердое топливо

- 13.7. Требования настоящего раздела следует выполнять при проектировании сооружений для разгрузки, приема, складирования и подачи топлива на территории котельной.
- 13.8. При доставке топлива вагонные или автомобильные весы на территории котельной следует предусматривать по согласованию с топливоснабжающей организацией.

- 13.9. Фронт разгрузки разгрузочного устройства и фронт разгрузки склада топлива следует предусматривать совмещенными. Проектирование отдельного фронта разгрузки на складе топлива допускается при специальном обосновании.
- 13.10. При разгрузочном устройстве с вагоноопрокидывателем на площадке котельной следует размещать размораживающее устройство.
- 13.11. Склады топлива и приемно-разгрузочные устройства, как правило, проектируются открытыми. Закрытые склады и приемно-разгрузочные устройства предусматриваются для районов жилой застройки, по специальным требованиям промышленных предприятий, на территории которых расположена котельная, а также при специальном обосновании в районах с доставкой топлива в навигационный период.
- 13.12. Площадки под штабели топлива должны быть организованы на выровненном и плотно утрамбованном естественном грунте.

Применение асфальта, бетона, булыжного или деревянного основания под штабель не допускается.

- 13.13. Вместимость склада топлива следует принимать:
- при доставке железнодорожным транспортом не менее 14 суточного расхода;
- при доставке автотранспортом не менее 7- суточного расхода;
- для котельных угледобывающих и углеперерабатывающих предприятий при доставке конвейерами на 2- суточный расход;
 - при доставке только водным транспортом на межнавигационный период;
- для котельных, работающих на торфе и располагаемых на расстоянии до 15 км от торфодобывающих и торфоперерабатывающих предприятий не более 2-х суточного запаса.
- 13.14. Габаритные размеры штабелей угля независимо от склонности его к окислению не ограничиваются и определяются возможностями механизмов, которыми оборудуется склад топлива.
- 13.15. Размеры штабелей торфа следует предусматривать по длине не более 125 м., по ширине не более 30 м. и по высоте не более 7 м. углы откоса штабелей необходимо предусматривать для кускового торфа не менее 60^{0} для фрезерного торфа не менее 40^{0} .
- 13.16. Расположение штабелей торфа следует предусматривать попарное с разрывами между подошвами штабелей в одной паре 5 м; между парами штабелей равными ширине штабеля по подошве, но не менее 12 м. Разрывы между торцами штабелей от их подошвы следует принимать для кускового торфа 20 м, для фрезерного торфа 45 м.
- 13.17. Расстояние от подошвы штабеля топлива до ограждения следует принимать 5 м, до головки ближайшего рельса железнодорожного пути -2 м, до края проезжей части автодороги -1,5 м.
- 13.18. Уровень механизации угольных складов должен обеспечивать их работу с минимальной численностью персонала. Выбор системы механизации определяется с учетом климатических условий размещения котельной, часового расхода топлива, его качества и требований котельных агрегатов, по его фракционному составу.

Складские механизмы, кроме бульдозеров, резервируются одним механизмом. При механизации склада только бульдозерами резерв должен быть в размере 50 % их расчетного количества.

При выдаче угля со склада следует принимать пробег бульдозера до 75 м.

Склады торфа должны оборудоваться погрузочными машинами непрерывного действия или грейферными кранами.

- 13.19. Часовая производительность всех механизмов, выдающих топливо со склада, должна быть не менее производительности каждой нитки основного тракта топливоподачи.
- 13.20. При наличии на складе топлива бульдозеров необходимо определить место их размещения.

13.21. Расчетная производительность топливоподачи котельной должна определяться по максимальному суточному расходу топлива котельной (с учетом расширения котельной) и количеству часов работы топливоподачи в сутки.

Производительность подачи топлива на склад от разгрузочного устройства или вагоноопрокидывателя а определяется по производительности последнего.

13.22. Системы топливоподачи, как правило, предусматриваются однониточными с дублированием отдельных узлов и механизмов.

При работе топливоподачи в три смены предусматривается двухниточная система ленточных конвейеров, из которых одна нитка конвейеров является резервной. Часовая производительность каждой нитки принимается равной расчетной производительности топливоподачи. Подача топлива от разгрузочного устройства на склад осуществляется по однониточной системе конвейеров.

13.23. При применении котлов с различными топками (камерными, слоевыми, топками «кипящего слоя») в тракте топливоподачи следует предусматривать дробилки различного измельчения топлива.

При работе на мелком топливе (0-25 мм) должна предусматриваться возможность работы помимо дробилок.

- 13.24. В тракте топливоподачи на конвейерах перед дробилками устанавливается устройство для улавливания из топлива металлических включений. При системах пылеприготовления со среднеходными и молотковыми мельницами это устройство следует устанавливать также после дробилок.
- 13.25. В основном тракте топливоподачи следует предусматривать установку ленточных весов.
- 13.26. При расходе топлива более 50 т/ч в тракте топливоподачи на конвейерах после дробилок должны предусматриваться пробоотборные и проборазделочные установки для определения качества топлива.
- 13.27. При двухниточной системе топливоподачи до и после дробилок следует предусматривать перекрестные пересыпки.
- 13.28. Угол наклона ленточных конвейеров при транспортировании топлива на подъем и использовании гладких лент необходимо принимать не более:
 - $12^{\ 0}$ на участке загрузки недробленного крупнокускового угля; $15^{\ 0}$ на недробленом крупнокусковом угле;

 - $18^{\,0}$ на дробленом угле;
- 13.29. Ленточные конвейеры тракта топливоподачи, как правило, устанавливаются закрытых отапливаемых галереях. Открытая установка ленточных конвейеров допускается для районов с температурой наружного воздуха для расчета отопления выше минус 20 °С и транспортерной лентой, рассчитанной для работы при отрицательных температурах.

Ширина прохода между конвейерами должна быть не менее 1000 мм, а боковых проходов - не менее 700 мм. Высота галереи в свету в местах прохода должна быть не менее 2,2 м.

Допускаются местные сужения боковых проходов до 600 мм.

При одном конвейере проход должен быть с одной стороны не менее 1000 мм, а с другой - не менее 700 мм.

Расстояние между эвакуационными выходами не должно превышать 200 м для надземных галерей и 100 м для подземных галерей.

В галереях через каждые 100 м необходимо предусматривать переходные мостики через конвейеры. В этих местах высота галереи должна обеспечивать свободный проход.

13.30. Угол наклона стенок приемных бункеров и пересыпных коробов принимается не менее 60° , для высоковлажных углей, шлама и промпродукта не менее 65° .

Стенки бункеров разгрузочных устройств и склада топлива должны иметь обогрев.

СП 89. 13330.2012

- 13.31. Устройства по пересыпке топлива внутри помещения, а также бункеры сырого топлива следует проектировать герметичными с устройствами по подавлению или улавливанию пыли.
- 13.32. В отапливаемых помещениях топливоподачи, как правило, следует проектировать мокрую уборку (гидросмыв).
- 13.33. Полезная вместимость бункера сырого топлива для каждого котла, режим работы топливоподачи, а также целесообразность устройства общих топливных бункеров котельной определяется на основании технико-экономического сравнения показателей возможных вариантов, принимается в соответствии с конструктивными характеристиками здания и должна быть не менее:
 - для углей 3-часового запаса,
 - для торфа 1.5-часового запаса.
- 13.34. Стенки бункеров твердого топлива надлежит проектировать с гладкой внутренней поверхностью и формой, обеспечивающей спуск топлива самотеком. Угол наклона приемных и пересыпных бункеров, стенок конусной части силосов, а также пересыпных рукавов и течек следует принимать:
 - для углей с углом естественного откоса не более 60° 60° , для углей с углом естественного откоса более 60° и торфа 65° , для промпродукта 70° .

Внутренние грани углов бункеров должны быть закруглены или скошены. На бункерах угля и торфа следует предусматривать устройства, предотвращающие застревание топлива.

13.35. Проектирование установок и систем пылеприготовления для котлов с камерным сжиганием твердого топлива следует производить в соответствии с техническими условиями и компоновкой завода-изготовителя котельной установки, руководствуясь требованиями методических материалов по проектированию систем пылеприготовления.

Жидкое топливо

- 13.36. Масса жидкого топлива, поступающего в топливохранилище, определяется путем обмера. Установка весов для определения массы жидкого топлива не предусматривается.
- 13.37. Длина фронта разгрузки железнодорожных цистерн грузоподъемностью 60 т принимается для основного, резервного и аварийного мазутохозяйтсв:

для котельных тепловой мощностью до 100 MBт - на две цистерны (одна - две ставки); для котельных тепловой мощностью более 100 MBт - исходя из слива суточного расхода мазута в две ставки.

- 13.38. Сливные устройства для мазута, доставляемого автомобильным транспортом, следует предусматривать на разгрузку одной автомобильной цистерны.
- 13.39. Сливные устройства легкого нефтяного топлива следует принимать из расчета разгрузки одной железнодорожной или автомобильной цистерны.
- 13.40.Для слива топлива из железнодорожных цистерн следует предусматривать приемные лотки, располагаемые между рельсами. По обеим сторонам приемных лотков предусматриваются бетонные отмостки с уклоном не менее 0,05 в сторону лотков.

При доставке топлива автотранспортом слив его в приемную емкость или непосредственно в топливохранилище следует предусматривать по приемным лоткам или через воронки.

13.41.Уклон лотков и труб, по которым предусматривается слив топлива в топливохранилище или приемную емкость, должен быть не менее 0,01.

Между лотком (трубой) сливных устройств и приемной емкостью или в самой емкости следует предусматривать установку гидравлического затвора и подъемной сетки (фильтра) для очистки топлива.

- 13.42. По всему фронту разгрузки мазута на уровне площадок обслуживания железнодорожных цистерн предусматривается эстакада для обслуживания разогревающего устройства.
- 13.43. Рабочая вместимость приемного резервуара при железнодорожной доставке топлива должна быть не менее 30 % вместимости цистерн, одновременно устанавливаемых под разгрузку.

Производительность перекачивающих насосов приемного резервуара выбирается с учетом обеспечения перекачки сливаемого мазута из цистерн, устанавливаемых под разгрузку, не более чем за 3 ч. Устанавливается не менее двух насосов без резерва.

- 13.44. При автомобильной доставке вместимость приемного резервуара следует принимать:
 - для аварийного, резервного и основного топлива в котельных с тепловой мощностью до 25 MBт равной вместимости 1 автоцистерны;
 - для основного топлива в котельных с тепловой мощностью от 25 до 100 MBт не менее 25 $\,\mathrm{m}^3$;
 - тепловой мощностью выше 100 MBr не менее 100 m^3 .

При этом резервуар для приема топлива из автоцистерн следует предусматривать стальным наземным.

13.45. Для хранения мазута следует предусматривать стальные или железобетонные наземные с обсыпкой или подземные резервуары.

Для хранения легкого нефтяного топлива и жидких присадок следует предусматривать, как правило, стальные резервуары. Допускается применение резервуаров из специальных пластиковых материалов, отвечающих климатическим условиям площадки строительства, и требованиям пожарной безопасности, что должно быть подтверждено сертификатом соответствия противопожарным нормам.

Для наземных металлических резервуаров, устанавливаемых в районах со средней годовой температурой наружного воздуха до +9 0 C, должна предусматриваться тепловая изоляция из несгораемых материалов.

13.46. Вместимости	резервуаров	хранения жидкого	топлива дол	іжна приниматься:
--------------------	-------------	------------------	-------------	-------------------

Назначение и способ доставки топлива	Вместимость хранилища	
Основное и резервное, доставляемое		
железнодорожным транспортом	На 10-суточный расход	
Основное и резервное, доставляемое		
автомобильным транспортом	На 5-суточный расход	
Аварийное, доставляемое железнодорож-		
ным или автомобильным транспортом	На 3-суточный расход	
Основное, резервное и аварийное,		
доставляемое по трубопроводам	На 2-суточный расход	

- 13.47. Для хранения основного или резервного топлива следует предусматривать не менее двух резервуаров. Для хранения аварийного топлива допускается установка одного резервуара.
- 13.48. Для блочно-модульных котельных тепловой мощностью до 10 МВт приемный резервуар и резервуар хранения могут быть совмещены.
- 13.49. Температуру разогрева жидкого топлива в железнодорожных цистернах следует принимать:
 - мазута M 40 плюс $30\,^{0}$ C; мазута M 100 плюс $60\,^{0}$ C;
 - для легкого нефтяного топлива плюс 10^{6} C.

Разогрев топлива, доставляемого автомобильным транспортом, не предусматривается.

СП 89. 13330.2012

- 13.50. В приемных емкостях, сливных лотках и трубопроводах, по которым сливается мазут, следует предусматривать устройства для поддержания температур, указанных в п. 13.52.
- 13.51. В местах отбора жидкого топлива из резервуаров топливохранилища должна поддерживаться температура:
 - мазута M 40 не менее плюс $60\,^{0}\mathrm{C}$; мазута M100 не менее плюс $80\,^{0}\mathrm{C}$; легкого нефтяного топлива не менее плюс $10\,^{0}\mathrm{C}$.
 - 13.52. Вязкость подаваемого в котельную мазута должна быть:
- при применении паромеханических форсунок не более 3 0 УВ, что для мазута марки 100 соответствует примерно 120 0 С;
- при применении механических форсунок 2,5 0 УВ, что для мазута марки 100 соответствует примерно 135 0 С;
- при применении паровых и ротационных форсунок не более 6 0 УВ, что соответствует примерно 90 0 С.
- 13.53. Разогрев мазута в резервуарах хранения предусматривается циркуляционной системой. При циркуляционном разогреве мазута могут предусматриваться:
 - независимая схема, предусматривающая установку специальных насосов и подогревателей;
 - использование насосов и подогревателей подачи мазута в котельную;
 - использование насосов, перекачивающих мазут из приемной емкости.

Производительность этого оборудования должна составлять не менее 2 % вместимости самого большого резервуара.

- 13.54. Для разогрева мазута следует использовать пар давлением от 0.7 до 1.0 МПа или перегретую воду с температурой не менее 120 0 C.
- 13.55. Подача мазута в котельную должна предусматриваться по циркуляционной схеме, легкого нефтяного топлива по тупиковой схеме.
- 13.56. Количество насосов для подачи топлива из топливохранилища в котельную (или к котлам) должно приниматься не менее двух. Один из устанавливаемых насосов резервный.

Производительность насосов подачи топлива должна быть не менее 110 % максимального часового расхода топлива при работе всех котлов по циркуляционной схеме и не менее 100 % - по тупиковой схеме.

13.57. Для очистки топлива от механических примесей следует предусматривать фильтры грубой очистки (до насосов) и тонкой очистки (за подогревателями мазута или перед горелками). Устанавливается не менее двух фильтров каждого назначения, в том числе один резервный.

При трубопроводной подаче фильтры грубой очистки не предусматриваются.

- 13.58. В котельных, предназначенных для работы только на жидком топливе, подача топлива от топливных насосов до котлов и подача теплоносителя к установкам топливоснабжения предусматривается для котельных первой категории по двум магистралям, а для котельных второй категории по одной магистрали. Каждая из магистралей должна быть рассчитана на подачу 75% топлива, расходуемого при максимальной нагрузке. При применении жидкого топлива в качестве резервного, аварийного или растопочного подача его к котлам предусматривается по одной магистрали независимо от категории котельной.
- 13.59. Для аварийного отключения на всасывающих и нагнетательных топливопроводах устанавливается запорная арматура на расстоянии от 10 до 50 м от насосной.
- 13.60. Расположение трубопроводов жидкого топлива в помещениях котельных следует предусматривать открытым, обеспечивающим к ним свободный доступ. Предусматривать прокладку трубопроводов жидкого топлива ниже нулевой отметки не допускается.

13.61. Для трубопроводов легкого нефтяного топлива при давлении до 1,6 МПа следует применять электросварные трубы, при большем давлении - бесшовные трубы.

Для трубопроводов жидкого топлива в помещении котельной, как правило, должна предусматриваться стальная арматура.

- 13.62. Мазутопроводы котельных давлением 2,5 МПа (от магистралей до горелок) должны выполняться из бесшовных или электросварных труб на сварке. Фланцевые соединения допускаются лишь в местах установки арматуры, измерительных устройств и заглушек.
 - 13.63. На мазутопроводе следует устанавливать:
- на отводе к котлу запорную задвижку; устройство для продувки мазутопровода паром и быстродействующий запорный клапан;

непосредственно у форсунки - запорную арматуру с ручным приводом;

на отводе к сливной магистрали (опорожнения) - запорную арматуру и устройство для установки заглушки.

- 13.64. В котельных, работающих на легком нефтяном топливе, на топливопроводах следует предусматривать:
- отключающее устройство с изолирующим фланцем и быстродействующим запорным клапаном с электроприводом на вводе топлива в котельную;
 - запорную арматуру на отводе к каждому котлу или горелке;
 - запорную арматуру на отводе к сливной магистрали
 - 13.65. Применение сальниковых компенсаторов на мазутопроводах не допускается.
- 13.66. Мазутопроводы котельной должны иметь теплоизоляционную конструкцию из негорючих материалов заводской готовности, а при прокладке на открытом воздухе обогревающий «спутник» в общей изоляции с ним.
- 13.67. Использование мазутопровода в качестве конструкции, несущей нагрузку от каких-либо сооружений или устройств, не допускается.

Мазутопроводы в пределах котельной должны иметь уклон не менее 0,003.

13.68. Наружную прокладку топливопроводов, как правило, следует предусматривать надземной. Подземная прокладка допускается в непроходных каналах со съемными перекрытиями с минимальным заглублением каналов без засыпки. В местах примыкания каналов к наружной стене здания каналы должны быть засыпаны или иметь несгораемые диафрагмы.

Топливопроводы должны прокладываться с уклоном не менее 0,003.

Все мазутопроводы должны предусматриваться в общей изоляции с трубопроводами теплоносителя.

13.69. В мазутном хозяйстве, как правило, следует предусматривать устройства для приема, слива, хранения, подготовки и дозирования жидких присадок в мазут.

Общая вместимость резервуаров для хранения жидких присадок принимается не менее вместимости железнодорожной (автомобильной) цистерны. Количество резервуаров должно быть не менее двух.

- 13.70. Растопочное мазутохозяйство для котельных, сжигающих твердое топливо, предусматривается в следующем объеме:
- фронт разгрузки при доставке железнодорожным или автомобильным транспортом рассчитанный на установку двух соответствующих цистерн;
 - мазутохранилище с установкой двух резервуаров вместимостью по 200 м³;
- для подачи мазута в котельную по два комплекта насосов, подогревателей и фильтров, один комплект резервный, устанавливаемых в мазутонасосной;
- от мазутонасосной до котельной прокладываются по одному напорному мазутопроводу, одному паропроводу и одному рециркуляционному мазутопроводу.

Производительность оборудования и пропускная способность трубопроводов выбираются с учетом растопки двух наибольших котлов и их работе с нагрузкой 30 % номинальной производительности.

- 13.71. В котельных допускается предусматривать установку закрытых расходных баков жидкого топлива вместимостью не более 5 м 3 для мазута, и 1 м 3 для легкого нефтяного топлива.
- При установке указанных баков в помещениях котельных следует руководствоваться требованиями СП 11.13330.
- 13.72. Для поддержания требуемого давления в мазутопроводах в котельной на начальном участке линии рециркуляции из котельной следует предусматривать установку регулирующих клапанов "до себя".
- 13.73. Для сбора дренажей от оборудования и трубопроводов мазутонасосной и котельной следует предусматривать дренажную емкость, размещаемую вне пределов мазутонасосной и котельной.

Газообразное топливо

- 13.74. Газоснабжение и газовое оборудование котельных следует проектировать в соответствии с требованиями СП 62.13330, ПБ-12-529-03 и СП 4.13130 с учетом указаний настоящего раздела.
- 13.75. При необходимости поддержания требуемого давления газа в котельных следует предусматривать газорегуляторные установки (ГРУ), размещаемые непосредственно в котельной, или газорегуляторные пункты (ГРП) на площадке котельной.
- 13.76. Производительность ГРУ и ГРП для котельных, сжигающих газ в качестве основного вида топлива, должна рассчитываться на максимальный расход газа всеми рабочими котлами; для котельных, сжигающих газ сезонно по расходу газа для данного режима.
- 13.77. В ГРУ (ГРП) следует предусматривать две нитки редуцирования на каждый котел единичной тепловой мощностью 30 МВт и более. Для котельных с единичной установленной тепловой мощностью котлов менее 30 МВт следует предусматривать по одной нитке редуцирования на каждые 30 МВт суммарной установленной тепловой мощности котлов.
- 13.78. Для котельной первой категории суммарной тепловой мощностью менее 30 МВт следует предусматривать две нитки редуцирования, одна из которых резервная.
- 13.79. Для котельных, предназначенных для работы только на газообразном топливе при суммарной установленной мощности менее 30 МВт, подвод газа от ГРУ (ГРП) до котлов должен предусматриваться по двум трубопроводам для котельных первой категории и по одному трубопроводу для котельных второй категории.
- 13.80. Предусматривать прокладку трубопроводов газообразного топлива ниже нулевой отметки не допускается.
- 13.81. Газопроводы котельной должны прокладываться с уклоном не менее 0,003 по ходу газа.
- 13.82. Для трубопроводов газообразного топлива в помещении котельной, как правило, должна предусматриваться стальная арматура.
- 13.83. Применение сальниковых компенсаторов на газопроводах котельной не допускается.
- 13.84. Использование газопровода в качестве конструкции, несущей нагрузку от каких-либо сооружений или устройств, не допускается.
- 13.85. На подводящем газопроводе к котельной должно быть предусмотрено отключающее устройство с изолирующим фланцем на наружной стене здания на высоте не более 1,8 м.
 - 13.86. На газопроводе внутри котельной следует предусматривать:
- на отводе газа к каждому котлу запорную арматуру, быстродействующий запорный клапан и термозапорный клапан;
 - на отводе газа непосредственно к каждой горелке запорную арматуру.

- 13.87. Газогорелочные устройства котлов должны быть оснащены запорными и контрольными устройствами в соответствии с ГОСТ 21204.
- 13.88. Выбор материала трубопроводов, арматуры и определение мест их размещения должны производиться в соответствии с требованиями СП 62.13330.
- 13.89. Запрещается прокладка газопроводов непосредственно через газоходы, воздуховоды и вентиляционные шахты.

14. Удаление золы и шлака

- 14.1. В котельных, работающих на твердом топливе, система золошлакоудаления должна обеспечивать надежное и бесперебойное удаление золы и шлака, безопасность обслуживающего персонала, защиту окружающей среды от загрязнения и выбираться в зависимости от:
 - количества золы и шлака, подлежащих удалению из котельной,
 - удаленности от отельной площадки для организации золошлакоотвала,
 - физико-химических свойств золы и шлака,
 - наличия потребителя и его требований к качеству золы и шлака,
 - при гидрозолошлакоудалении обеспеченности водными ресурсами.
- 14.2. Удаление и складирование золы и шлака, как правило, следует предусматривать совместным. Раздельное удаление золы и шлака применяется в зависимости от наличия потребителя и по его требованиям.
- 14.3. Технологический комплекс по переработке и утилизации золы и шлака может размещаться как на площадке котельной, так и на месте золошлакоотвала.
- 14.4. Системы транспорта золы и шлака в пределах площадки котельной могут быть механическими, пневматическими, гидравлическими или комбинированными. Выбор системы золошлакоудаления производится на основании технико-экономического сравнения вариантов.

Системы механического транспорта

- 14.5. Системы механического транспорта золы и шлака, как правило, следует предусматривать в котельных с котлами, оборудованными топками для слоевого сжигания.
- 14.6. При проектировании общей для всей котельной системы механического транспорта золы и шлака непрерывного действия следует предусматривать резервные механизмы.
- 14.7. Системы периодического транспорта следует принимать при выходе золы и шлака до 4 т/ч; системы непрерывного транспорта при выходе более 4 т/ч.
- 14.8. Для удаления золы и шлака из котельных общей массой до 150 кг/ч следует применять монорельсовый или автопогрузочный транспорт контейнеров-накопителей, узкоколейный транспорт в вагонетках, скреперные установки, конвейеры.
- 14.9. Для механических систем периодического транспортирования следует применять скреперные установки, скиповые и другие подъемники; для непрерывного транспортирования канатно-дисковые, скребковые и ленточные конвейеры.
- 14.10. При использовании для транспортирования шлака ленточных конвейеров температура шлака не должна превышать $80\,^{0}\mathrm{C}$.
 - 14.11. При использовании скреперных установок следует применять:
- системы "мокрого" совместного золошлакоудаления при выходе золы и шлака до $0.5\ \mathrm{T/Y}$;
 - системы "мокрого" раздельного золошлакоудаления при выходе шлака до 1,5 т/ч;
- системы "сухого" золошлакоудаления, когда "мокрые" системы неприемлемы (при сооружении котельной в Северной климатической зоне, при дальних перевозках в зимнее время, при транспортировании золы и шлака, склонных к цементации во влажном состоянии, при промышленном использовании золы и шлака в сухом виде).

- 14.12. Скребковые конвейеры могут применяться в системах как "сухого", так и "мокрого" золошлакоудаления.
 - 14.13. Скребковые конвейеры могут устанавливаться в непроходных каналах, конструкция которых должна допускать возможность осмотра и ремонта узлов конвейера.

Пневматические системы транспорта

- 14.14. Для пневматического транспорта золы и шлака от котлов к разгрузочной станции следует применять всасывающую систему. При этом расстояние транспортировки должно быть не более 200 м. Для пневматического транспорта золы и шлака от разгрузочной станции до отвала следует применять напорную систему при расстоянии транспортировки не более 1000 м.
 - 14.15. При проектировании систем пневмотранспорта следует принимать:
 - концентрацию материалов от 5 до 40 кг на 1 кг транспортирующего воздуха;
- наибольший размер кусков транспортируемых пневмотрубопроводами не должен превышать величины равной 0,3 диаметра пневмотрубопровода.
- 14.16. При проектировании систем пневматического транспорта следует принимать:
 - скорость движения золошлакоматериалов в начальных участках пневмотрубопроводов не менее 14 м/с;
 - наименьший внутренний диаметр пневмотрубопроводов для золы 100 мм,
 - для шлака 125 мм,
 - наибольший внутренний диаметр не более 250 мм.
- 14.17. Часовая производительность всасывающей системы, в зависимости от количества заборных точек должна быть в 3-4 раза больше часового выхода транспортируемого материала.
- 14.18. Режим работы системы пневматического транспорта принимается периодическим; производительность системы определяется из условия продолжительности ее работы 4-5 ч в смену без учета времени на переключения.
- 14.19. Для дробления шлака, поступающего в вакуумную пневматическую систему, под шлаковыми бункерами котлов следует предусматривать дробилки:
 - двухвалковые зубчатые для дробления непрочного слабоспекшегося шлака с максимальным начальным размером кусков до 100 мм, получаемого при сжигании в камерных топках углей с высокой температурой плавкости золы,
 - трехвалковые зубчатые для дробления механически непрочных шлаков с размерами кусков более 100 мм до 400 мм, шлаков с повышенной механической прочностью, с неравномерными фракциями.
- 14.20. Температура шлака, поступающего на дробление, не должна превышать $600\,^{0}\mathrm{C}$.
- 14.21. Для пневмотрубопроводов следует применять трубы из низколегированной стали марки 14ХГС. В рекомендуемом приложении 1-1 настоящих Норм указана зависимость минимальной толщины стенки от диаметра применяемых труб.
- 14.22. Пневмотрубопроводы должны выполняться сварными, соединения с оборудованием и арматурой допускается выполнять фланцевыми.
- 14.23. Прокладку пневмотрубопроводов в помещениях котельной следует предусматривать над полом с устройством переходных мостиков. Минимальное расстояние от низа трубы до пола должно быть 1,5 диаметра трубы, но не менее 150 мм.
- 14.24. Соединения деталей и элементов пневмотрубопроводов должны производиться сваркой. Угол наклона отвода не должен превышать 30 ⁰.При этом участок трубы против врезки отвода должен быть усилен укрепляющей накладкой соединенной с трубой внахлест.
- 14.25. Для осмотра и прочистки пневмотрубопроводов следует устанавливать лючки или контрольные пробки.

- 14.26. В качестве запорной арматуры на пневмотрубопроводах следует принимать пробковые краны, устанавливаемые на вертикальных участках.
- 14.27. Участки пневмотрубопроводов, имеющие температуру свыше 40° С, должны быть ограждены сетками. Теплоизоляция пневмотрубопроводов не допускается.
- 14.28. Отделение золы и шлака от транспортирующего воздуха в вакуумных установках пневмотранспорта следует производить в инерционных осадительных камерах.

Максимальная скорость воздуха в камере не должна превышать 0,15 м/с. аэродинамическое сопротивление осадительной камеры должно составлять 100-150 Па.

Рабочая вместимость камеры должна обеспечивать непрерывную работу системы в течение 45 мин.

14.29. Под осадительными камерами следует предусматривать установку сборных бункеров, изготавливаемых из металла или железобетона.

Угол наклона стенок должен быть не менее:

- металлических бункеров -50^{0} ;
- железобетонных бункеров 55° 0.

Гидравлические системы транспорта

- 14.30. Системы гидравлического золошлакоудаления следует принимать в следующих случаях:
 - обеспеченности водными ресурсами,
 - отсутствия промышленного использования золы и шлака,
 - невозможности организации сухого складирования золы и шлака;
 - экологической целесообразности установки мокрых золоуловителей;
 - значительных расстояний от котельной до отвала.
- 14.31. При использовании в качестве золоуловителей электрофильтров следует принимать комбинированную пневмо- гидравлическую систему золоудаления, при которой зола из-под золоуловителя транспортируется пневмосистемами в промбункер, из промбункера самотечными каналами гидроудаления в насосную.
- 14.32. Шлаковые каналы при твердом шлакоудалении следует выполнять с уклоном не менее 0,015, при жидком шлакоудалении не менее 0,018. Золовые каналы должны иметь уклон не менее 0,01.

Каналы, как правило, следует выполнять железобетонными с облицовкой из камнелитых изделий и перекрытиями на уровне пола легкосъемными плитами.

14.33. Проектирование багерных насосных и внешней системы гидрошлакозолоудаления следует выполнять по Нормам технологического проектирования тепловых электростанций РАО ЕЭС России.

15. Автоматизация

Общие требования

- 15.1. В проектах котельных должны предусматриваться защита оборудования (автоматика безопасности), сигнализация, автоматическое регулирование, контроль, входящие в автоматизированную систему управления технологическими процессами котельной (АСУ ТП).
- 15.2. При выполнении проекта автоматизации следует, как правило, принимать серийно изготавливаемые сертифицированные средства автоматизации и комплектные системы управления с устройствами микропроцессорной техники. При включении котельной в систему диспетчерского управления города, района или предприятия по заданию на проектирование следует предусматривать комплекс приборов для возможного подключения к ним систем диспетчеризации.
 - 15.3. В помещениях котельных следует предусматривать центральные (ЦШУ) и местные щиты управления (МЩУ). ЦШУ следует располагать в изолированном помещении центрального поста управления (ЦПР). При разработке АСУ ТП щиты

питания датчиков нижнего уровня и контроллеры следует размещать вблизи технологического оборудования, средства визуального отображения, регистрации, управления (верхний уровень АСУ ТП) - в помещениях ЦПР.

15.4. Помещения ЦЩУ не следует размещать под помещениями с мокрыми технологическими процессами, под душевыми, санитарными узлами, вентиляционными камерами с подогревом воздуха горячей водой или паром,, а также под трубопроводами агрессивных веществ (кислот, щелочей).

Высота помещения ЦШУ должна быть не менее 3,5 м (допускается местное уменьшение высоты до 3,0 м).

- $15.5.~\rm B$ котельных с паровыми котлами с давлением пара 1,4 МПа и выше или водогрейными котлами с температурой воды $150~\rm ^0C$ и выше должна предусматриваться лаборатория для проверки и профилактики средств автоматизации. Допускается не предусматривать лабораторию для котельных предприятий, имеющих центральную лабораторию.
- 15.6 При использовании при проектировании котельных основного и вспомогательного оборудования импортного производства кроме требований данного раздела необходимо выполнить специальные требования заводов (фирм) изготовителей в части обеспечения защиты, сигнализации, автоматического регулирования контроля изложенных в инструкциях по монтажу и эксплуатации.

Защита оборудования

- 15.7. Для паровых котлов, предназначенных для сжигания газообразного и жидкого топлива, независимо от давления пара и производительности следует предусматривать устройства, автоматически прекращающие подачу топлива к горелкам при:
 - повышении или понижении давления газообразного топлива перед горелками;
 - понижении давления жидкого топлива перед горелками за регулирующим органом;
 - уменьшении разрежения и/или повышения давления в топке;
 - понижении давления воздуха перед горелками с принудительной подачей воздуха;
 - погасании факелов горелок, отключение которых при работе котла не допускается;
 - повышении давления пара при работе котельных без постоянного обслуживающего персонала;
 - повышении или понижении уровня воды в барабане;
 - исчезновении напряжения в цепях защиты (только для котельных второй и третьей категорий);
- 15.8. Для водогрейных котлов при сжигании газообразного и жидкого топлива следует предусматривать устройства, автоматически прекращающие подачу топлива к горелкам при:
 - повышении или понижении давления газообразного топлива перед горелками;
 - понижении давления жидкого топлива перед горелками за регулирующей арматурой;
 - понижении давления воздуха перед горелками с принудительной подачей воздуха;
 - уменьшении разрежения и/или повышения давления в топке;
 - погасании факелов горелок, отключение которых при работе котла не допускается;
 - повышении температуры воды на выходе из котла;
 - повышении или понижении давления воды на выходе из котла;
 - уменьшении расхода воды через котел;
 - остановке ротора форсунки;
 - неисправности цепей защиты (только для котельных второй и третьей категорий).

Примечание: * Для котлов с температурой воды 115 ⁰C и ниже при понижении давления воды за котлом и уменьшении расхода воды через котел автоматическое прекращение подачи топлива к горелкам не предусматривается.

15.9. Для паровых котлов при камерном сжигании твердого топлива следует предусматривать устройства, автоматически прекращающие подачу топлива к горелкам при:

- понижении давления воздуха за дутьевым вентилятором;
- уменьшении разрежения в топке;
- погасании факела;
- повышении или понижении уровня воды в барабане;
- исчезновении напряжения в цепях защиты (только для котельных второй и третьей категорий).
- 15.10.Для паровых котлов с механизированными слоевыми топками для сжигания твердого топлива следует предусматривать устройства, автоматически отключающие тягодутьевые установки и механизмы, подающие топливо в топку, при:
 - понижении давления воздуха под решеткой;
 - уменьшении или понижении уровня воды в барабане;
 - исчезновении напряжения в цепях защиты (только для котельных второй категории).
- 15.11. Для водогрейных котлов с механизированными слоевыми топками и с камерными топками для сжигания твердого топлива следует предусматривать устройства, автоматически отключающие тягодутьевые установки и механизмы, подающие топливо в топки при:
 - повышении температуры воды на выходе из котла;
 - повышении или понижении давления воды на выходе из котла;
 - уменьшении расхода воды через котел;
 - уменьшении разрежения в топке;
- понижении давления воздуха под решеткой или за дутьевыми вентиляторами. Примечание: Для котлов в температурой воды $115\,^{0}$ С и ниже допускается не предусматривать автоматическое отключение тягодутьевых установок и механизмов, подающих топливо в топки, при понижении давления воды за котлом и понижении давления воздуха под решеткой или за дутьевым вентилятором.
- 15.12. Для паротурбинных установок с противодавлением, предназначенных для выработки электрической и тепловой энергии на собственные нужды котельной, следует предусматривать устройства, автоматически отключающие подачу пара на турбину и генератор от сети 0,4 кВ при:
 - повышении давления пара на входе;
 - повышении температуры пара на входе;
 - повышении давления пара на выходе;
 - понижении давления масла;
 - повышении температуры масла;
 - повышении частоты вращения ротора турбины;
 - аварийном отключении кнопкой.

При этом автоматическое отключение генератора и конденсаторных батарей должно производиться одновременно с автоматическим отключением отсечного клапана турбины и передачей сигнала срабатывания защиты на ЦПУ.

- 15.13. Для систем пылеприготовления следует предусматривать устройства:
- автоматически отключающие питатель сырого топлива при снижении допустимого уровня в бункере сырого топлива (для систем с прямым вдуванием);
- дистанционно управляемые шибера на газовоздухопроводах присадки холодного воздуха или низкотемпературных дымовых газов к сушильному агенту на входе в мельницу и клапаны на подводе воды в газовоздухопровод перед молотковой мельницей при достижении температуры I предела пылегазовоздушной смеси за мельницей. Для всех топлив, кроме антрацита и полуантрацита, необходимо предусматривать дистанционное управление клапаном на паропроводе к газовоздухопроводу перед мельницей;
- автоматически отключающие мельницу и прекращающие подачу в нее сушильного агента при достижении температуры II предела пылегазовоздушной смеси за (для систем с промбункером).

- 15.14. Для подогревателей высокого давления (ПВД) следует предусматривать автоматическое их отключение и включение обводной линии при аварийном повышении уровня конденсата в ПВД.
- 15.15. В установках химводоподготовки при проектировании схем с подкислением и водород-катионирования с "голодной" регенерацией должно предусматриваться автоматическое отключение насосов подачи кислоты при понижении значения рН обрабатываемой воды за допустимые пределы.

Следует предусматривать также автоматическое отключение насосов подачи щелочи в открытых системах теплоснабжения при повышении значения рН обрабатываемой воды за допустимые пределы.

- 15.16. Для баков-аккумуляторов систем теплоснабжения следует предусматривать автоматическое отключение насосов подачи в них воды и закрытие задвижки на сливной линии рециркуляции при недопустимом повышении уровня в баках.
- 15.17. Значения параметров, при которых должны срабатывать защита и сигнализация, устанавливаются заводами-изготовителями оборудования и уточняются в процессе наладочных работ.
- 15.18. Необходимость дополнительных условий защиты устанавливается по данным заводов-изготовителей оборудования.

Сигнализация

15.19. В котельной следует предусматривать светозвуковую сигнализацию:

- останова котла;
- аварийной остановки турбоустановки;
- срабатывания защиты;
- засорения масляного фильтра турбоустановки;
- засорения парового сита турбоустановки;
- понижения температуры и давления жидкого топлива в общем трубопроводе к котлам;
- повышения температуры в газоходе перед системами газоочистки;
- повышения и понижения температуры жидкого топлива в резервуарах;
- повышения температуры подшипников электродвигателей и технологического оборудования (при требовании заводов-изготовителей);
- повышения температуры в баке рабочей воды системы вакуумной деаэрации;
- повышения температуры пылегазовоздушной смеси за мельницей или сепаратором;
- повышения температуры воды к анионитным фильтрам;
- повышения температуры охлажденной воды за градирней оборотной системы чистого цикла шлакозолоудаления;
- уменьшения разрежения в газоходах за системами газоочистки;
- повышения и понижения давления газообразного топлива в общем газопроводе к котлам;
- понижения давления воды в каждой питательной магистрали;
- понижения давления (разрежения) в деаэраторе;
- понижения и повышения давления воды в обратном трубопроводе тепловой сети;
- повышения давления воздуха перед каплеотделителем;
- повышения и понижения расхода воды к осветлителям;
- повышения уровня в шламоотделителе и шламоуплотнителе осветлителя;
- понижения уровня в бункере сырого топлива (для систем пылеприготовления с прямым вдуванием);
- понижения и повышения уровня в бункерах пыли;
- повышения уровня угля в головных воронках узлов пересыпки систем топливоподачи;
- повышения верхнего уровня в батарейном и пылевом циклонах;
- отклонения верхнего и нижнего уровня в сборном бункере золы;

- повышения уровня в дренажных приямках;
- повышения и понижения уровня воды в баках (деаэраторных, аккумуляторных, систем горячего водоснабжения, конденсатных, осветленной воды системы химводоподготовки; нагретой и охлажденной воды чистого цикла оборотной системы водоснабжения; нагретой и охлажденной воды оборотной системы ШЗУ; шламовых вод, шлама и осветленной воды топливоподачи; системы утилизации сточных вод и др.), а также повышения и понижения раствора реагентов в мерниках при автоматизированных системах химводоподготовки;
 - повышения и понижения уровня жидкого топлива в резервуарах;
- понижения значения pH в обрабатываемой воде (в схемах химводоподготовок с подкислением) и повышения величин pH (в схемах с подщелачиванием);
 - прекращения подачи топлива из бункера сырого топлива в мельницу (для систем пылеприготовления с прямым вдуванием);
 - отсутствия напряжения на рабочем и резервном вводах питания:
 - неисправности оборудования всех систем и установок котельных.
- 15.20. В котельных независимо от вида сжигаемого топлива должны устанавливаться приборы контроля содержания оксида углерода в помещении.
- 15.21. В котельных следует предусматривать пожарную сигнализацию соответствующую требованиям СП 5.13130. Прибор пожарной сигнализации должен устанавливаться в помещении ЦЩУ.

Автоматическое регулирование

- 15.22. Регулирование процессов горения следует предусматривать для котлов с камерными топками для сжигания твердого, газообразного и жидкого топлива, в том числе и резервного, а также для котлов со слоевыми механизированными топками, топками кипящего слоя и вихревыми, позволяющими автоматизировать их работу.
- 15.23. Автоматическое регулирование котельных работающих без постоянного обслуживающего персонала должно предусматривать автоматическую работу основного и вспомогательного оборудования котельной в зависимости от заданных параметров работы и с учетом автоматизации теплопотребляющих установок. Запуск котлов при аварийном их отключении должен производиться после устранения неисправностей вручную.

Автоматизацию процесса горения для работы котлов на аварийном топливе допускается не предусматривать.

- 15.24. Для паровых котлов следует предусматривать автоматическое регулирование питания водой; при давлении пара до 0,17 МПа допускается ручное регулирование.
- 15.25. Для паровых котлов давлением свыше 0,17 МПа следует предусматривать автоматическое регулирование непрерывной продувки солевого отсека.
- 15.26. Для водогрейных котлов по требованию завода-изготовителя следует предусматривать регулирование температуры воды на входе в котел при работе на газообразном топливе, и на выходе из котла при работе на жидком топливе.
- 15.27. Для паротурбинных установок с противодавлением в зависимости от режима их работы в системе котельной следует предусматривать регулятор давления пара в линии противодавления или регулятор электрической активной мощности.
- 15.28. Для пылеприготовительных установок с промежуточным бункером пыли следует предусматривать регуляторы:
 - загрузки мельниц топливом;
 - давления (разрежения) сушильного агента перед мельницей (по требованию завода-изготовителя котла):
 - температуры пылевоздушной смеси за мельницей (для всех видов топлива, кроме антрацита).
- 15.29. При применении схемы пылеприготовления с прямым вдуванием пыли в топку котла следует предусматривать регуляторы:
 - расхода первичного воздуха в мельницы;

- температуры пылевоздушной смеси за мельницей (для всех топлив, кроме антрацита).
- 15.30. Для деаэратора атмосферного и повышенного давления следует предусматривать регулирование уровня и давления в баке. При параллельном включении нескольких деаэраторов с одинаковым давлением пара следует предусматривать общие регуляторы.
 - 15.31. Для вакуумных деаэраторов следует предусматривать регуляторы:
 - температуры поступающей умягченной воды;
 - температуры деаэрированной воды;
 - уровня в промежуточных баках деаэрированной воды.
- 15.32. Для редукционных установок следует предусматривать регулирование давления, для охладительных установок температуры, для редукционно-охладительных установок давления и температуры пара.
- 15.33. Для пароводяных подогревателей необходимо предусматривать регулирование уровня конденсата.
- 15.34. На общих топливопроводах к котлам следует предусматривать регуляторы давления газообразного топлива, температуры и давления жидкого топлива.
 - 15.35.Для установок химводоподготовок следует предусматривать регуляторы:
 - температуры исходной и регенерируемой воды при установке осветлителей;
 - расхода исходной и регенерируемой воды к осветлителям;
 - уровня воды в баках исходной и химочищенной воды;
 - дозирования реагентов в установках корректирования водного режима паровых котлов и систем теплоснабжения.
- 15.36. В котельных следует предусматривать регулирование статического давления и количества воды, поступающей в сети централизованного теплоснабжения, при поддержании постоянной заданной температуры теплоносителя независимо от температуры наружного воздуха (количественное регулирование).
 - 15.37. В циркуляционных трубопроводах горячего водоснабжения и в обратном трубопроводе тепловой сети следует предусматривать автоматическое поддержание давления воды.
- 15.38. В котельной с паровыми котлами с давлением пара 0,17 МПа и выше следует предусматривать регулирование давления воды в питательной магистрали перед котлами.
- 15.39. Необходимость регулирования параметров, не указанных в данном разделе, определяется заводами-изготовителями технологического оборудования.

Контроль

- 15.40~ Для котлов с давлением пара 0,17~ МПа, водогрейных котлов с температурой воды до $115~^{0}$ С следует предусматривать визуальное отображение параметров на мониторе системы АСУ ТП:
 - давления пара в барабане (паросборнике);
 - уровня воды в барабане парового котла.
 - температуры воды в общем трубопроводе перед водогрейными котлами и на выходе из каждого котла (до запорной арматуры);
 - давления воды на выходе из водогрейного котла;
 - температуры дымовых газов за котлом;
 - температуры воздуха перед котлами на общем воздуховоде;
 - давления газообразного топлива перед горелками, после последнего (по ходу газа) отключающего устройства;
 - давления воздуха после регулирующего органа;
 - разрежения в топке;
 - разрежения за котлом;
 - содержание кислорода в уходящих газах (переносной газоанализатор);

- 15.41. Для паровых котлов с давлением пара свыше $0,17~\rm M\Pi a$ и производительностью менее $4~\rm T/q$ следует предусматривать визуальное отображение параметров на мониторе системы ACУ $\rm T\Pi$:
- температуры и давления питательной воды (в общей магистрали перед котлами);
- температуры дымовых газов за котлом (при установке экономайзеров);
- температуры дымовых газов перед теплоутилизатором;
- температуры дымовых газов перед дымососом;
- температуры воздуха перед котлом;
- температуры жидкого топлива перед котлом (при отсутствии контура циркуляции);
- температуры питательной воды (после экономайзера);
- давления пара и уровня воды в барабане;
- давления питательной воды перед регулирующей арматурой;
- давления воздуха перед горелкой;
- давления воздуха за дутьевым вентилятором и под решеткой;
- давления пара перед мазутной форсункой;
- разрежения в топке;
- разрежения за котлом перед дымососом (переносной прибор);
- давления жидкого топлива перед форсункой;
- давления газообразного топлива перед горелкой после последнего (по ходу газа) отключающего устройства;
 - содержания кислорода в уходящих газах (переносной газоанализатор);
 - расхода пара в общем трубопроводе от котлов (регистрирующий прибор);
 - тока электродвигателя дымососа.
- 15.42. Для паровых котлов с давлением пара свыше 0,17 МПа и производительностью от 4 до 30 т/ч следует предусматривать визуальное отображение параметров на мониторе системы АСУ ТП:
- температуры пара за пароперегревателем до главной паровой задвижки (для котлов производительностью более 20 т/ч показывающий и регистрирующий прибор);
 - температуры питательной воды после экономайзера;
 - температуры жидкого топлива перед котлом (при отсутствии контура циркуляции);
 - температуры дымовых газов перед и за экономайзером;
- температуры воздуха после дутьевого вентилятора, до и после калорифера и воздухоподогревателя;
- давления пара в барабане (для котлов производительностью более 10 т/ч, показывающий и регистрирующий прибор);
- давления перегретого пара до главной паровой задвижки (для котлов производительностью более 10 т/ч показывающий и регистрирующий прибор);
 - давления пара у мазутных форсунок;
 - давления питательной воды перед регулирующим органом;
 - давления питательной воды на входе в экономайзер после регулирующего органа;
- давления воздуха после дутьевого вентилятора и каждого регулирующего органа для котлов, имеющих зонное дутье, перед горелками за регулирующими органами и пневмозабрасывателями;
 - давления жидкого топлива перед горелками за регулирующими органами;
- давления газообразного топлива перед каждой горелкой до и после последнего (по ходу газа) отключающего устройства;
 - разрежения в топке;
 - разрежения перед дымососом и теплоутилизатором;
 - расхода пара от котла (регистрирующий прибор);
- расхода жидкого и газообразного топлива на котлы (регистрирующий прибор на общем трубопроводе);
 - содержания кислорода в уходящих газах (переносной газоанализатор);
 - уровня воды в барабане котла (регистрирующий прибор);

- тока электродвигателя дымососа.
- 15.43. Для паровых котлов с давлением пара свыше 0,17 МПа и производительностью более 30 т/ч следует предусматривать визуальное отображение параметров на мониторе системы АСУ ТП:
- температуры пара за пароперегревателем до главной паровой задвижки
- показывающий и регистрирующий прибор);
- температуры пара до и после пароохладителя;
- температуры питательной воды до и после экономайзера;
- температуры дымовых газов перед и за каждой ступенью экономайзера,
- воздухоподогревателя и теплоутилизатора (показывающий и регистрирующий прибор);
- температуры воздуха до и после воздухоподогревателя;
- температуры пылевоздушной смеси перед горелками при транспортировании пыли горячим воздухом;
- температуры слоя для топок кипящего слоя;
- давления пара в барабане (показывающий и регистрирующий прибор);
- давления перегретого пара до главной паровой задвижки (показывающий и регистрирующий прибор);
- давления питательной воды перед регулирующей арматурой;
- давления пара у мазутных форсунок;
- давления питательной воды на входе в экономайзер после регулирующей арматуры;
- давления воздуха после дутьевого вентилятора и каждого регулирующего органа для котлов, имеющих зонное дутье, перед горелками за регулирующими органами и пневмозабрасывателями;
- давления жидкого топлива перед горелками за регулирующей арматурой;
- давления газообразного топлива перед каждой горелкой после последнего (по ходу газа) отключающего устройства;
- разрежения в топке;
- разрежения перед экономайзером и перед воздухоподогревателем;
- давления (разрежения) перед дымососом и теплоутилизатором;
- расхода пара от котла (регистрирующий прибор);
- расхода жидкого и газообразного топлива на котел (регистрирующий прибор);
- расхода питательной воды к котлу (показывающий и регистрирующий прибор);
- содержания кислорода в уходящих газах (показывающий и регистрирующий прибор);
- дымности (для пылеугольных котлов);
- солесодержания котловой воды;
- уровня воды в барабане (показывающий и регистрирующий прибор);
- уровня слоя для топок кипящего слоя;
- тока электродвигателя дымососа;
- 15.44. Для водогрейных котлов с температурой воды более $115~^{0}\mathrm{C}$ следует предусматривать визуальное отображение параметров на мониторе системы АСУ ТП:
- температуры воды на входе в котел (показывающий и регистрирующий прибор при поддержания постоянной температуры воды);
- температуры воды на выходе из котла до запорной арматуры (показывающий и регистрирующий прибор);
- температуры воздуха до и после воздухоподогревателя;
- температуры дымовых газов за котлом и теплоутилизатором;
- давления воды на входе в котел после запорной арматуры:
- давления воды на выходе из котла до запорной арматуры;
- давления воздуха после дутьевого вентилятора и каждого регулирующего органа для котлов, имеющих зонное дутье, перед горелками за регулирующими органами и пневмозабрасывателями;
- давления жидкого топлива перед горелками за регулирующей арматурой;

- давления пара у мазутных форсунок;
- давления газообразного топлива перед каждой горелкой после последнего (по ходу газа) отключающего устройства;
- разрежения в топке;
- давления (разрежения) перед дымососом и теплоутилизатором;
- расхода воды за котлом (показывающий и регистрирующий прибор);
- расхода жидкого и газообразного топлива (регистрирующий прибор);
- содержание кислорода в уходящих газах (для котлов тепловой мощностью до 20 МВт переносной газоанализатор, для котлов большей мощности показывающий и регистрирующий приборы);
- цвета дыма (для пылеугольных котлов);
- тока электродвигателя дымососа.
- 15.45. Для систем пылеприготовления следует предусматривать визуальное отображение параметров на мониторе АСУ ТП:
- температуры пыли в бункере не менее, чем в 4-х зонах (для всех топлив, кроме антрацита и полуантрацита);
- температуры сушильного агента перед мельницей или подсушивающим устройством (кроме систем с прямым вдуванием пыли, работающих на воздухе);
- температуры пылегазовоздушной смеси за мельницей или сепаратором (для фрезерного торфа, сланца, бурых углей, газовых длиннопламенных углей регистрирующий прибор);
- температуры перед мельничным вентилятором для установок с промбункером (для всех топлив, кроме антрацита, полуантрацита, тощего, экибастузского и кузнецких углей марок OC, 2CC);
- температуры пылевоздушной смеси перед горелками при подаче пыли горячим воздухом;
 - температуры сушильного агента;
- давления перед подсушивающим устройством или мельницей, перед и за мельничным вентилятором;
 - расхода сушильного агента, поступающего в молотковые и среднеходные мельницы;
 - уровня пыли в бункере;
 - сопротивления (перепада давления) шаровых барабанных и среднеходных мельниц;
 - перепада давления (сопротивления);
- тока электродвигателей мельниц, вентиляторов мельничного и первичного воздуха, вентилятора горячего воздуха, дымососов присадки газов в пылесистему, питателей сырого топлива и пыли;
- 15.46. В газоходе после котла, экономайзера, воздухоподогревателя, перед дымососом следует предусматривать газоотборные трубки для анализа дымовых газов.
- 15.47. В проекте следует предусматривать визуальное отображение параметров на мониторе системы АСУ ТП:
- температуры воды в питательных магистралях (только при установке подогревателей высокого давления);
 - температуры жидкого топлива на входе в котельную;
 - давления воды в питательных магистралях;
 - давления жидкого и газообразного топлива в магистралях перед котлами;
 - давления газообразного топлива между запорной арматурой на байпасе ГРУ (ГРП);
 - давления воды до и после грязевиков в системах теплоснабжения;
- 15.48. В проекте следует предусматривать регистрацию и визуальное отображение параметров на мониторе АСУ ТП:
 - температуры перегретого пара в общем паропроводе к потребителям;
 - температуры подпиточной воды;
 - температуры воды в подающем и обратном трубопроводах систем теплоснабжения;
 - температуры возвращаемого конденсата;

- температуры исходной воды;
- давления пара в общем паропроводе к потребителям;
- давления воды в подающем и обратном трубопроводах систем теплоснабжения;
- давления и температуры газа в общем газопроводе на вводе в котельную и ГРП;
- расхода исходной воды (или суммирующий прибор);
- расхода воды в каждом подающем трубопроводе (или тепломер) систем теплоснабжения (или суммирующий прибор);
- расхода воды в каждом обратном трубопроводе (или тепломер) систем теплоснабжения или расхода воды на подпитку (или суммирующий прибор);
 - расхода пара на каждом трубопроводе к потребителю;
- расхода возвращаемого конденсата на каждом трубопроводе от потребителя (или суммирующий прибор);
 - расхода газа в общем газопроводе на вводе в котельную или ГРП;
 - расхода осветленной воды от золоотвала (или суммирующий прибор);
- 15.49. Для деаэрационных установок необходимо предусматривать визуальное отображение параметров на мониторе АСУ ТП:
 - температуры воды в баках;
 - температуры воды, поступающей в деаэратор;
 - давления пара в деаэраторах атмосферного и повышенного давления (показывающий и регистрирующий прибор);
 - разрежения в вакуумных деаэраторах (показывающий и регистрирующий прибор);
 - уровня воды в баках;
- 15.50. Для насосных установок следует предусматривать визуальное отображение параметров на мониторе АСУ ТП:
 - давления во всасывающих и напорных патрубках всех насосов;
 - давления пара перед и после паровых питательных насосов).
- 15.51. В теплообменных установках необходимо предусматривать визуальное отображение параметров на мониторе АСУ ТП:
 - температуры нагреваемой и греющей среды до и после каждого подогревателя;
 - температуры конденсата после охладителей конденсата;
- давления нагреваемой среды в общем трубопроводе до подогревателей и за каждым подогревателем;
 - давления греющей среды к подогревателям.
- 15.52. Для установок химводоподготовки (кроме параметров, указанных в п.п. 15.50 и 15.51) следует предусматривать визуальное отображение на мониторе АСУ ТП:
- температуры воды к анионитным фильтрам;
- температуры раствора после эжектора соли;
- температуры воды к осветлителю;
- давления исходной воды;
- давления воды до и после каждого фильтра;
- давления воздуха в магистрали к установке химводоподготовки;
- давления воды к эжекторам;
- расхода воды на химводоподготовку (суммирующий или регистрирующий прибор);
- расхода воды к каждому ионитному и за каждым осветлительным фильтром;
- расхода воды на взрыхление фильтров;
- расхода воды к каждому эжектору регенерирующего раствора;
- расхода воды к каждому осветлителю;
- уровня в баках декарбонизированной, осветленной, умягченной и обессоленной воды, в емкостях растворов реагентов, в баках нейтрализаторах, в баках конденсата;
- уровня шлама в осветлителе;
- значения рН воды за осветлителем;
- значения рН воды после подкисления и подщелачивания;

- электропроводности сбросных вод от фильтров и отработанных растворов за бакамирегенераторами (в схемах утилизации сточных вод);
- концентрации (электропроводности) регенерационных растворов.
- 15.53. Для установок снабжения котельных жидким топливом (кроме приборов, указанных в п.п. 15.50 и 15.51) следует предусматривать визуальное отображение параметров на мониторе АСУ ТП:
 - температуры жидкого топлива в каждом резервуаре;
 - температуры жидкого топлива в линии к насосам подачи топлива в котельную;
 - давления топлива до и после фильтров;
 - уровня топлива в резервуарах и приемной емкости.
- 15.54. Для установок приема и ввода жидких присадок следует предусматривать визуальное отображение на мониторе АСУ ТП температуры присадок в резервуарах.
- 15.55.Для редукционных, охладительных и редукционно-охладительных установок следует предусматривать визуальное отображение параметров на мониторе АСУ ТП:
 - температуры перегретого пара в подводящем паропроводе;
 - температуры охлажденного пара;
 - давления пара в подводящем паропроводе;
 - давления редуцированного пара;
 - давления охлаждающей воды.
- 15.56. Для систем пневмозолошлакоудаления следует предусматривать визуальное отображение параметров на мониторе АСУ ТП:
 - температуры воды перед и за вакуумными насосами;
 - давления пара к эжекционной вакуумной установке;
 - разрежения в воздухопроводе между осадительной камерой и вакуумной установкой;
 - разрежения на выходе из вакуумной установки до запорной арматуры;
 - разрежения воздуха перед вакуумными насосами;
 - перепада давления на диафрагме воздуха перед вакуумными насосами;
 - давления воды за шламовыми водоструйными насосами;
 - давления в трубопроводах среды от станции обезвоживания и к станции обезвоживания.
- 15.57. Для систем горячего водоснабжения следует предусматривать регистрацию и визуальное отображение на мониторе АСУ ТП уровня в баках-аккумуляторах.
- 15.58. Для систем золоулавливания следует предусматривать визуальное отображение параметров на мониторе АСУ ТП:
 - температуры дымовых газов перед системами;
 - разрежения в газоходах до и после систем.
- 15.59. Для систем топливоподачи следует предусматривать визуальное отображение параметров на мониторе АСУ ТП:
 - производительности конвейера перед надбункерной галереей;
 - давления воздуха перед и после каплеуловителя;
 - давления воды к каплеуловителю.

16. Электроснабжение. Электротехнические устройства, связь и сигнализация Электроснабжение и электротехнические устройства

- 16.1. Электроснабжение котельных должно осуществляться в зависимости от категории котельной по надежности отпуска теплоты потребителю, определяемой в соответствии с п.4.7 настоящих норм и Правил устройства электроустановок (ПУЭ).
- 16.2. При проектировании в котельных турбогенераторов следует руководствоваться требованиями Норм технологического проектирования электростанций РАО ЕЭС России.
- 16.3. Электродвигатели сетевых и подпиточных насосов в котельных, вырабатывающих в качестве теплоносителя воду с температурой выше $115\,^{0}$ C, а также питательных насосов (при отсутствии питательного насоса с паровым приводом)

независимо от категории котельной, как источника отпуска теплоты, а также все котельные, работающие на твердом топливе, независимо от параметров теплоносителя относятся по условиям электроснабжения к первой категории.

- 16.4. Распределительные устройства напряжением 6 и 10 кВ для котельных установок следует выполнять не менее, чем с двумя секциями.
- 16.5. Трансформаторные подстанции для котельных следует применять не менее, чем с двумя трансформаторами.

В котельных второй категории для питания электроприемников 0,4 кВ котлов допускается применение трансформаторных подстанций с одним трансформатором при наличии централизованного резерва и возможности замены повредившегося трансформатора за время не более 1 суток.

- 16.6. Для электродвигателей насосов сетевых, подпиточных, рециркуляционных, горячего водоснабжения, питательной воды, тягодутьевых машин, угольных конвейеров и дробильных установок следует предусматривать частотно регулируемые приводы (ЧРП) и устройства плавного пуска (УПП).
- 16.7. Выбор степени защиты оболочки электродвигателей, пусковой аппаратуры, аппаратов управления, светильников, выбор электропроводки следует производить в соответствии с ПУЭ и ГОСТ в зависимости от характеристики помещений (зон) котельных по условиям среды, определяемой по обязательному приложению 7-1 с учетом следующих дополнительных требований:
- при расположении турбогенераторов на напряжении 0,4 кВ, оборудования установки водоподготовки, насосных станций и газорегуляторных установок в общем помещении с котлами выбор степени защиты оболочки электрооборудования и выбор электропроводки производятся по характеристике среды котельного зала;
- для помещений дизельных, мазутонасосных и топливоподачи, оборудованных системой гидроуборки, выбор степени защиты оболочки электрооборудования и электропроводки производится с учетом воздействия брызг воды и проникновения пыли.
- 16.8. Прокладку питающих и распределительных сетей следует выполнять открыто на конструкциях или в коробах. При невозможности такой прокладки допускается предусматривать прокладку кабелей в каналах, а проводов в трубах или коробах. В помещениях станции водоподготовки в котельных залах с гидроуборкой, в помещениях топливоподачи, складов и насосных станций жидкого топлива и жидких присадок прокладка в каналах запрещается.

Прокладка транзитных проводов и кабелей в помещениях и сооружениях топливоподачи не допускается.

16.9.Следует предусматривать блокировку электродвигателей дымососов, дутьевых вентиляторов и механизмов подачи топлива в котел.

В системах топливоподачи, пылеприготовления и золошлакоудаления следует предусматривать блокировку механизмов, обеспечивающую включение и отключение электродвигателей в определенной последовательности, исключающей завал отдельных механизмов топливом, золой или шлаком. Механизмы технологического оборудования, от которого предусмотрены местные отсосы, должны быть сблокированы с вентиляторами аспирационных установок.

Блокировка электродвигателей механизмов котлов со слоевыми ручными топками не предусматривается.

16.10. Автоматическое включение резерва (ABP) насосов питательных, сетевых, подпиточных, горячего водоснабжения, подачи жидкого топлива должно предусматриваться в случаях аварийного отключения работающего насоса или при падении давления в трубопроводе после насоса. Для котельных второй категории с паровыми котлами с давлением пара до $0.17~\rm M\Pi a$ и водогрейными котлами с температурой воды до $115~\rm ^{10}C$ при наличии в котельной постоянного обслуживающего персонала ABP насосов допускается не предусматривать, при этом необходимо предусмотреть сигнализацию аварийного отключения насосов.

- 16.11. Необходимость ABP насосов, не указанных в п.16.10 настоящих норм и правил, определяется в соответствии с принятой схемой технологических процессов.
- 16.12. Пуск электродвигателей сетевых и подпиточных насосов следует производить при закрытой задвижке на напорном патрубке насоса; при этом необходимо выполнить блокировку электродвигателей насоса и задвижки при наличии электрифицированной задвижки. В случае установки ЧРП или УПП выполнение блокировки электродвигателя насоса и задвижки не предусматривается.
- 16.13. При работе насосных станций жидкого топлива без постоянного обслуживающего персонала следует предусматривать дистанционное отключение с ЦПУ котельной насосов подачи топлива, а при работе насосных станций с постоянным обслуживающим персоналом дистанционное управление задвижками на трубопроводах жидкого топлива на вводе в котельную.
- 16.14. В котельных должно быть предусмотрено аварийное освещение. Светильники аварийного освещения должны присоединяться к независимому источнику питания или на него переключаться при отключении основного.
- 16.15. При отсутствии в системе электроснабжения независимых источников питания допускается применение ручных световых приборов с аккумуляторными или сухими элементами.
- 16.17. Световое ограждение дымовых труб должно соответствовать требованиям РЭГА РФ-94.
- 16.18. Молниезащиту зданий и сооружений котельных следует выполнять в соответствии с CO-153-34.21.122.
- 16.19. Помещения щитов станций управления, распределительных устройств напряжением 6, 10 кВ, трансформаторных подстанций, а также турбогенераторы не следует размещать под помещениями с мокрыми технологическими процессами, под душевыми, санитарными узлами, вентиляционными камерами с подогревом воздуха горячей водой, под трубопроводами агрессивных веществ (кислот, щелочей), а также под помещениями, имеющими гидросмыв (помещения топливоподачи).

Распределительные устройства, помещения щитов и пультов управления, трансформаторные подстанции не допускается встраивать в здания разгрузки фрезерного торфа.

16.20. При установке электрогенераторов необходимо предусматривать возможность переключения вырабатываемой электроэнергии на собственные нужды во внешнюю электросеть и возможность использования на токоприемниках котельной внешнего источника электроснабжения.

Связь и сигнализация

- 16.21. Для оперативного управления котельной мощностью более 3 МВт необходимо предусматривать следующие виды связи:
 - оперативную диспетчерскую телефонную связь (ОДТС);
 - командно-поисковую связь (КПС);
 - городскую телефонную связь (ГТС);
 - радиофикацию;
 - электрочасофикацию.
 - 16.22. Для обеспечения ОДТС в помещении ЦПУ необходимо устанавливать пульт.
- 16.23. Питание ОДТС должно осуществляться от двух независимых источников. При отсутствии независимых источников питания ОДТС должна быть присоединена к независимым друг от друга линиям, начиная от щита подстанции или при наличии только одного ввода в здание, начиная от этого ввода.
- 16.24. КПС следует предусматривать установку в помещении ЦПУ главного прибора громкоговорящей связи и приборов громкоговорящей связи во всех отдельно стоящих зданиях котельной и в местах возможного нахождения персонала в главном корпусе.

- 16.25. Аппарату ГТС необходимо устанавливать в помещениях начальника котельной, ЦПУ, поста управления топливоподачи, пожарного депо и в других помещениях при обосновании их необходимости.
- 16.26. В помещении ЦШУ следует предусматривать радиотрансляционную установку, а во всех помещениях возможного нахождения персонала и на территории котельной абонентские громкоговорители без регуляторов.
- 16.27. Для информации единого времени в котельных тепловой мощностью свыше 5 МВт следует предусматривать установку первичных электрочасов с общей обслуживающей трассой.

17. Отопление и вентиляция

- 17.1. При проектировании отопления и вентиляции котельных следует руководствоваться требованиями СП 60.13330 и настоящих норм.
- 17.2. Микроклиматические условия на рабочих местах производственных помещений котельных следует принимать в соответствии с действующими санитарными нормами и правилами, исходя из категорий работ по уровню энергозатрат в соответствии с обязательным приложением 7-1.
- 17.3. При проектировании систем отопления и вентиляции котельных расчетные температуры воздуха в помещениях котельных в холодный период следует принимать по обязательному приложению 7-1. В котельных, работающих без постоянного присутствия обслуживающего персонала, расчетная температура воздуха в помещении принимается не ниже +5 0 C в холодный период года. В теплый период года в котельных, работающих без постоянного присутствия обслуживающего персонала, а также в помещениях центральных постов управления всех котельных расчетная температура воздуха должна быть не выше температуры, обеспечивающей нормальную работу контрольно-измерительных приборов и автоматики.
- 17.4. В помещениях котельных залов и водоподготовительных установок допускается проектировать как воздушное отопление, так и системы с местными отопительными приборами.
- 17.5. Предельные температуры на поверхности отопительных приборов в помещениях, где возможны выделения пыли угля и сланцев не должны превышать $130\,^{0}$ C, а пыли торфа $-110\,^{0}$ C. В этих помещениях следует предусматривать отопительные приборы с гладкой поверхностью, как правило, регистры из гладких труб.
- 17.6. В электропомещениях и помещениях ЦЩУ на системах отопления следует устанавливать запорную и регулирующую арматуру на сварке. В качестве отопительных приборов следует предусматривать регистры или конвекторы с гладкими концами труб под сварку.
- 17.7. Галереи ленточных конвейеров, помещения дробильных устройств, а также подземная часть разгрузочных устройств должны быть оборудованы отоплением для поддержания в них температур в соответствии с обязательным приложением 17-1. Галереи конвейеров, подающих топливо на склад для районов с расчетной температурой наружного воздуха минус $20\,^{0}$ C и ниже должны оборудоваться отоплением для поддержания в них температуры не ниже $10\,^{0}$ C, в остальных районах они не должны отапливаться.
- 17.8. При расчете системы отопления тракта топливоподачи следует учитывать теплоту, расходуемую на обогрев железнодорожных вагонов и топлива (кроме торфа).
- 17.9. При расчете системы отопления конвейерных галерей от склада при загрузке топлива через загрузочные воронки следует учитывать нагрев поступающего в помещение наружного воздуха.
- 17.10. Расчетный воздухообмен в котельных должен определяться с учетом тепловыделений от трубопроводов и оборудования, а также расходов воздуха, необходимого для горения, при заборе его из помещения. При этом воздухообмен должен быть не менее однократного в час.

- 17.11. Для помещений, имеющих явные избытки тепла, должна предусматриваться естественная вентиляция. При невозможности обеспечения необходимого воздухообмена за счет естественной вентиляции следует проектировать вентиляцию с механическим побуждением. Схемы вентиляции, способы подачи и удаления воздуха следует принимать в соответствии с приложением 17-1.
- 17.12. При проектировании естественного притока в котельном зале, в холодный и переходный период года, фрамуги для приточного воздуха должны располагаться за котлами - на высоте не менее 4-х м.

В теплый период естественный приток следует осуществлять через фрамуги, расположенные преимущественно в рабочей зоне, как перед фронтом котлов, так и за

17.13. Для помещений насосных станций жидкого топлива следует предусматривать десятикратный воздухообмен в час с удалением 2/3 объема воздуха из нижней зоны и 1/3 из верхней.

В помещениях насосных станций жидкого топлива с производствами категорий Б следует предусматривать приточные и вытяжные системы с резервными вентиляторами, обеспечивающими 100 % производительности каждой системы.

- 17.14. При проектировании вентиляции помещений котельных, работающих на твердом топливе, следует предусматривать очистку воздуха, удаляемого аспирационными установками перед выбросом в атмосферу.
- 17.15. Обеспыливающие установки следует предусматривать раздельными для каждой нитки конвейеров с минимальной протяженностью воздуховодов.
- 17.16. Аспирационные установки в надбункерных помещениях следует проектировать из условия объединения в одну систему 4-6 отсосов.

При коллекторной схеме количество отсосов не ограничивается. Для предотвращения оседания пыли коллектора следует предусматривать вертикального направления.

17.17. Для предотвращения отложения пыли в воздуховодах их следует прокладывать вертикально или с наклоном под углом к горизонту не менее:

 $45^{\ 0}$ - при пыли угля, золы, шлака; $60^{\ 0}$ - при пыли торфа.

При прокладке горизонтальных участков воздуховодов и с углами наклона их до 45 ⁰ их следует оснащать устройствами для периодической очистки.

- 17.18. Средства очистки в системах обеспыливания с направлением запыленного воздуха в котлоагрегаты предусматривать не следует. В остальных случаях необходимо предусматривать установки по очистке воздуха от пыли до допустимой концентрации.
- 17.19. Мокрые пылеулавливающие устройства должны устанавливаться в помещениях с внутренней температурой в холодный период года не ниже $+5^{\circ}$ C.
 - 17.20. Все вентиляционное оборудование и воздуховоды должны быть заземлены.
- 17.21.Объединение вытяжных воздуховодов трактов топливоподач с воздуховодами других помещений не допускается.

18. Водоснабжение и канализация Водоснабжение

- 18.1. При проектировании водоснабжения котельных следует руководствоваться требованиями [12], СП 30.13330 и СП 31.13330.
- 18.2. Для котельных в зависимости от схемы водоснабжения района или предприятия следует проектировать объединенную систему водоснабжения для подачи воды на хозяйственно-питьевые, производственные и противопожарные нужды. Присоединение к раздельным системам соответствующего назначения допускается при наличии аналогичных систем в месте расположения котельной.
 - 18.3. Количество вводов водопровода следует принимать:

- два ввода для котельных первой категории и для котельных второй категории при количестве пожарных кранов более 12;
- один ввод для остальных котельных.
- 18.4. Для помещений топливоподачи и котельного зала при работе на твердом и жидком топливе должна предусматриваться мокрая уборка, для чего следует устанавливать поливочные краны диаметром 25 мм, длину поливочного шланга следует принимать равной 20 40 м.
- 18.5. При определении суточных расходов воды следует учитывать расходы на мокрую уборку помещений котельной и отапливаемых помещений топливоподачи исходя из расхода 2 л воды на 1 м 2 площади пола и внутренней поверхности галерей, в течение 1 часа в сутки.

При расчете максимально часовых расходов воды следует исходить из условий производства уборки в период наименьшего водопотребления котельной.

- 18.6. Использование воды питьевого качества на производственные нужды котельной при наличии производственной сети водопровода не допускается.
- 18.7. В помещениях, через которые прокладываются трубопроводы жидкого и газообразного топлива, следует предусматривать установку пожарных кранов. При этом пожарные краны следует размещать из расчета орошения каждой точки двумя пожарными струями воды расходом в соответствии со СП 10.13130 с учетом требуемой высоты компактной струи.
- 18.8. Дренчерные завесы следует предусматривать в местах примыкания конвейерных галерей к главному корпусу котельной, узлам пересыпки и дробильному отделению. Управление пуском дренчерных завес следует предусматривать со щита топливоподачи и дублировать пусковыми кнопками в местах установки дренчерных завес.
- 18.9. Системы пожаротушения на складах угля и торфа следует предусматривать в соответствии с СП 90.13330.
- 18.10. Системы пожаротушения на складах жидкого топлива следует предусматривать в соответствии с требованиями СП 110.13330.
- 18.11. Для котельной тепловой мощностью более 100 МВт внутренний противопожарный водопровод следует предусматривать в соответствии с СП 90.13330.
- 18.12. В котельных, как правило, следует предусматривать оборотную систему водоснабжения для охлаждения оборудования.
- 18.13. В котельных следует предусматривать питьевые фонтанчики или автоматы газированной воды.

Канализация

18.14. При проектировании канализации следует предусматривать очистку на локальных очистных сооружениях производственных сточных вод, загрязненных механическими и другими примесями (от осветлителей и фильтров, установок предварительной очистки воды, от мытья полов и других), перед выпуском в наружную сеть канализации или направлять эти сточные воды на шлакозолоотвал.

При технико-экономическом обосновании следует предусматривать шламонакопители.

18.15. Сточные воды перед выпуском в сеть дождевой канализации следует очищать до допустимых концентраций.

Расчетную концентрацию жидкого топлива в дождевых сточных водах следует принимать в соответствии с данными СП 110.13330.

18.2.8. Пропускная способность сети и сооружений производственно-дождевой канализации должна быть рассчитана в соответствии с СП 110.13330.

19. Дополнительные требования к строительству в особых природных условиях Строительство в северной строительно-климатической зоне и в районах вечной мерзлоты

- 19.1. Котельные, сооружаемые в Северной строительно-климатической зоне, относятся к первой категории, независимо от категории потребителей теплоты, по надежности теплоснабжения.
- 19.2. Объемно-планировочные решения зданий котельных должны обеспечивать применение конструкций с максимальной степенью сборности транспортабельных деталей и изделий с надежными и простыми в монтаже соединениями, позволяющими производить монтаж зданий и сооружений круглогодично и в условиях низких температур.

При этом следует предусматривать широкое применение местных эффективных строительных материалов.

19.3. При сохранении мерзлого состояния вечномерзлых грунтов (принцип 1) все здания и сооружения котельных, включая станции перекачки конденсата, резервуары "мокрого" хранения реагентов и газоходы, следует предусматривать надземными с исключением теплового воздействия на грунты оснований.

Примыкание газоходов к дымовым трубам должно предусматриваться на высоте, исключающей или ограничивающей тепловое воздействие дымовых газов на грунты оснований через стволы и фундаменты труб.

Допускается предусматривать приемную емкость для жидкого топлива заглубленного типа. При этом необходимо предусматривать тепловую изоляцию наружных поверхностей резервуаров.

19.4. Все оборудование котельных, как правило, следует предусматривать в закрытых помещениях. На открытых площадках допускается предусматривать установку золоуловителей, баков-аккумуляторов системы централизованного горячего водоснабжения и осветлителей резервуаров для хранения жидкого топлива.

Приемно-разгрузочные устройства твердого топлива следует проектировать закрытого типа.

- 19.5. Закрытые склады твердого топлива следует предусматривать для местностей с повышенным выпадением осадков и снежными заносами, а также с преобладающими сильными ветрами.
- 19.6. При прокладке в проветриваемом подполье следует предусматривать мероприятия, исключающие тепловое воздействие, а также попадание влаги на грунты, основания и фундаменты зданий.
- 19.7. При определении расчетной производительности котельных следует учитывать дополнительные расходы теплоты на подогрев водопроводной воды у потребителя.
- 19.8. Прокладку трубопроводов в котельной, сооружаемой на вечно мерзлых грунтах, следует предусматривать выше пола. Устройство в полу каналов и приямков не допускается.
- 19.9. Для оборудования и трубопроводов необходимо предусматривать дренажносливную систему с организованным сбросом.
- 19.10. При прокладке трубопроводов в проветриваемом подполье следует поверхности подполья планировать с уклоном в сторону лотка.
- 19.11. Вводы и выводы теплопроводов должны быть сконцентрированы в ограниченном количестве мест. При этом должно быть исключено влияние тепловыделений от вводов и выводов теплопроводов на фундаменты зданий.
- 19.12. Все периодически действующие трубопроводы (дренажные или продувочные) следует прокладывать с горячими спутниками.
- 19.13. На трубопроводах следует устанавливать стальную запорную и регулирующую арматуру. На трубопроводах, прокладываемых в подпольях, запрещается устанавливать запорную и регулирующую арматуру, спускные и воздушные краны.

- 19.14. В зависимости от условий организации топливоснабжения котельных вместимости складов твердого и жидкого топлива при соответствующем обосновании допускается увеличивать сверх указанных в п.п. 13.16 и 13.49.
- 19.15. Количество насосов для подачи жидкого топлива в котельную (или к котлам) должно быть не менее трех, в том числе один резервный.
- 19.16. При доставке жидкого топлива водным транспортом проектом необходимо предусматривать стоечное судно, оборудованное устройствами для перекачки топлива непосредственно из судовых емкостей в резервуары топливохранилищ.

Систему трубопроводов, соединяющую насосы судна с резервуарами, допускается прокладывать сборно-разборной с возможностью демонтажа в межнавигационный период.

При возможности перекачки топлива средствами судов, доставляющих топливо, стоечное судно не предусматривается.

19.17. Системы золоудаления следует, как правило, применять сухие механические или пневматические.

Строительство в районах с сейсмичностью 7 баллов и более

- 19.18. В проектах котельных должны предусматриваться котлы и оборудование, конструкция которых рассчитана изготовителем для установки в районах требуемой расчетной сейсмичности.
- 19.19.При трассировке технологических трубопроводов через стены и фундаменты жесткая заделка труб не допускается. Размеры отверстий для пропуска труб должны обеспечивать зазор не менее 10 мм, при наличии просадочных грунтов зазор по высоте должен быть не менее 20 мм; заделку зазора следует выполнять плотными эластичными материалами.
- 19.20. На вводах и выводах технологических трубопроводов из зданий или сооружений, в местах присоединения трубопроводов к насосам, соединения вертикальных участков трубопроводов с горизонтальными, в местах резкого изменения направления трассы трубопроводов необходимо предусматривать соединения, допускающие угловые и продольные перемещения трубопроводов.
- 19.21. На горизонтальных участках газопроводов, на вход в здание котельной следует устанавливать сейсмодатчик, сблокированный с электромагнитным клапаном, отключающим подачу газа в котельную при появлении сейсмических колебаний.

Строительство в районах с просадочными грунтами

- 19.22. Для предотвращения попадания воды в грунт все полы котельных должны быть спланированы с уклоном 0,002 к специально предусмотренным бетонным лоткам.
- 19.23. При открытой установке технологического оборудования (деаэраторов, баков) для организации отвода и сбора случайных проливов и переливов площадки должны быть спланированы с уклоном 0,002 к специально предусмотренным бетонным лоткам.
- 19.24. При трассировке технологических трубопроводов через стены и фундаменты жесткая заделка труб не допускается. Размеры отверстий для пропуска труб должны обеспечивать зазор не менее 20 мм, по высоте; заделку зазора следует выполнять плотными эластичными материалами.
- 19.25.Вертикальную планировку площадки строительства следует предусматривать с таким расчетом, чтобы выемки котлованов и размещение земляных масс не вызывали оползневых и просадочных явлений, нарушения расчетного режима грунтовых вод, заболачивания территории и образования наледей, изменения ветров и снежных покровов в нежелательном направлении, образования больших снежных отложений на инженерных коммуникациях, конструкциях зданий и сооружений.
- 19.26. При проектировании проездов и дорог на площадках с просадочными и пучинистыми грунтами или в случаях, когда по условиям планировки нельзя возводить насыпи, следует предусматривать замену просадочных и пучинистых грунтов основания

непросадочными и непучинистыми грунтами и материалами. Толщина заменяемого слоя грунта должна быть не менее глубины оттаивания, определяемой теплотехническим расчетом.

20. Охрана окружающей среды

- 20.1. Предпроектные и проектные решения, а также предлагаемые мероприятия по охране окружающей среды должны отвечать требованиям [2] и [15], действующих нормативных документов по строительству и экологии и обеспечивать нормативное значение факторов, нарушающих существующий экологический баланс.
- 20.2. При разработке раздела «Охрана окружающей среды» следует руководствоваться СП 51.13330, ОНД-86, СанПиН 2.1.6.1032-01 и СанПиН 2.2.1/2.1.1.1031-01.
- 20.3. Котельные и связанные с ними шлакозолоотвалы и очистные сооружения следует размещать на землях несельскохозяйственного назначения или непригодных для сельского хозяйства.

При отсутствии таких земель могут выбираться участки на сельскохозяйственных угодьях худшего качества, не покрытых лесом или занятых кустарниками и малоценными насаждениями.

- 20.4. В исключительных случаях допускается размещение котельных на орошаемых и осушенных землях, пашнях, земельных участках, занятых многолетними плодовыми насаждениями и виноградниками, а также на землях, занятых водоохранными, защитными и другими лесами. При этом изъятие указанных земель допускается только в исключительных случаях в соответствии с [6].
- 20.5. В составе проекта котельной должен быть проект по рекультивации земель, отводимых на временное пользование.
- 20.6. Размещение котельных в прибрежных полосах (зонах) водоемов допускается только по согласованию с органами по регулированию использования и охране вод в соответствии с [3].
- 20.7. Для защиты водного бассейна от загрязнений различными производственными сточными водами должны быть предусмотрены соответствующие очистные сооружения, обеспечивающие соблюдение санитарно-гигиенических нормативов.
- 20.8. Сброс сточных вод в водоемы должен проектироваться с соблюдением "СанПиН 4630-88 и в установленном порядке согласовываться с органами по регулированию использования и охране вод, Роспотребнадзора и инспекции по охране рыбных запасов и регулированию рыбоводства и другими заинтересованными органами.
- 20.9. При проектировании котельных, как правило, должно предусматриваться применение частично или полностью оборотных систем водоснабжения, повторного использования отработанных в одном технологическом процессе вод на других установках.
- 20.10. При проектировании системы водоподготовки, золошлакоотвалов и других сооружений необходимо предусматривать комплексные мероприятия по защите поверхностных и грунтовых вод от загрязнения сточными водами.

Уменьшение количества загрязненных производственных сточных вод необходимо предусматривать за счет применения в технологическом процессе совершенного оборудования и рациональных схемных решений.

- 20.11. При расчете рассеивания в атмосфере вредных веществ количество выделяемых вредных выбросов следует принимать по данным заводов (фирм) изготовителей котлов, подтвержденным протоколами испытаний. Оборудование, изготовители которого не представляют этих данных, применять не следует.
- 20.12. Уровни шума и вибрации, проникающие в ближайшие жилые помещения от работы всего оборудования котельных, не должны превышать значений определенных санитарными нормами для дневного и ночного времени.

20.13. Ограждающие конструкции (стены, пол, потолок, окна, двери, люки, вентиляционные решетки и др.) должны обеспечивать снижение воздушного шума, распространяющегося из котельной в ближайшие помещения жилых, общественных и промышленных зданий до уровней, допустимых санитарными нормами.

21. Энергетическая эффективность

- 21.1. В проектах котельных должны быть представлены основные технико-экономические показатели, гарантирующие экономическую обоснованность и энергетическую эффективность системы теплоснабжения в соответствии с [8].
- 21.2. Выбор, расчет и разработка тепловых и гидравлических схем котельных должны производиться с учетом достижения максимального коэффициента энергетической эффективности системы теплоснабжения.
 - 21.3. Коэффициент энергетической эффективности системы следует определять по формуле:

$$\eta_0 = \eta_1 \cdot \varepsilon_1 \cdot \eta_2 \cdot \varepsilon_2 \cdot \eta_3 \cdot \varepsilon_3 \cdot \eta_4 \cdot \varepsilon_4, \tag{5.1}$$

где: η_0 - коэффициент энергетической эффективности системы теплоснабжения;

- η_1 расчетный коэффициент полезного действия теплопотребляющего оборудования систем отопления и вентиляции;
- ϵ_1 коэффициент эффективности регулирования потребления тепла потребителем; его величину следует принимать:
- при системах отопления и вентиляции зданий с индивидуальной разводкой, когда количество вырабатываемого тепла соответствует количеству потребляемого тепла, $\varepsilon_1 = 1$:

при общепринятых системах отопления зданий $\epsilon_1 = 0.9$.

- η_2 коэффициент полезного действия оборудования, устанавливаемого в тепловых пунктах;
- ${f \epsilon}_2$ коэффициент эффективности регулирования трансформируемого в тепловом пункте тепла и распределения его между различными системами (отопление, вентиляция, кондиционирование, горячее водоснабжение); его величину следует принимать:
- при количественно-качественном регулировании отпуска тепла $\varepsilon_2 = 0.98$;
- при использовании элеваторных узлов $\varepsilon_2 = 0.9$.
- η_3 расчетный коэффициент потерь тепла в тепловых сетях; определяется расчетным путем в зависимости от протяженности, диаметра трубопроводов, типа теплоизоляции, способа прокладки; по тс
- ${f \epsilon}_3$ коэффициент эффективности регулирования тепловых и гидравлических режимов в тепловых сетях; его величину следует принимать:
- при качественном регулировании отпуска тепла на источнике $\varepsilon_3 = 0.9$;
- при количественном регулировании отпуска тепла на источнике $\varepsilon_3 = 0.98$.
- η_4 коэффициент полезного действия оборудования в котельной, его величина принимается по паспортным данным оборудования;
- ϵ_4 коэффициент эффективности регулирования отпуска тепла в АИТ; его величина принимается:
- при качественном регулировании отпуска тепла $\varepsilon_4 = 0.9$;
- при количественно-качественном регулировании отпуска тепла $\epsilon_4 = 0.98$.
- 21.4. Расчетный коэффициент энергетической эффективности котельной предназначенного для теплоснабжения только одного здания, определяется по формуле:

$$\eta_0 = \eta_1 \cdot \varepsilon_1 \cdot \eta_4 \cdot \varepsilon_4 \tag{5.2}$$

- 21.5. Для достижения максимального значения энергетической эффективности системы теплоснабжения в котельной следует принимать схему количественного регулирования отпуска тепла при постоянной температуре в подающем трубопроводе и переменном гидравлическом режиме, а в ИТП схему количественно-качественного регулирования потребления тепла системами отопления, вентиляции, кондиционирования и горячего водоснабжения. Для обеспечения количественного и количественно-качественного регулирования следует использовать циркуляционные и смесительные насосы с регулируемым электроприводом.
- 21.6. Сравнение вариантов следует производить по инвестиционным затратам, действующим в районе строительства тарифам, расчетным эксплуатационным затратам с учетом затрат на сервисное техническое обслуживание.
- 21.7. В котельной должен быть предусмотрен учет потребления энергоресурсов, в том числе для собственных нужд, учет отпуска тепловой энергии и теплоносителя потребителям.

Библиография

- [1] Градостроительный кодекс Российской Федерации по состоянию на 20 января 2012 г.
- [2] Федеральный закон № 7 –ФЗ от 10 января 2002 г. «Об охране окружающей среды»
- [3] Федеральный закон № 74 -Ф3 от 3 июня 2006 г. «Водный кодекс Российской Федерации»
- [4] Федеральный закон № 116-ФЗ от 20 июня 1997 г. «О промышленной безопасности опасных производственных объектов»
- [5] Федеральный закон № 123-ФЗ от 22 июля 2008 г. «Технический регламент о требованиях пожарной безопасности»
- [6] Федеральный закон № 136-ФЗ от 25 октября 2001 г. «Земельный кодекс Российской Федерации»
- [7] Федеральный закон № 190-ФЗ от 30 июля 2010 г. «О теплоснабжении»
- [8] Федеральный закон № 261-ФЗ от 23 ноября 2009 г «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации"
- [9] Федеральный закон № 384-ФЗ от 30 декабря 2009 г. « Технический регламент о безопасности зданий и сооружений»
- [10] Постановление Правительства РФ № 87 от 16 февраля 2008 г. «Положение о составе разделов проектной документации и требования к их содержанию»
- [11] Постановление Правительства РФ № 317 от 17 мая 2002 г. «Об утверждении Правил пользования газом и предоставления услуг по газоснабжению в Российской Федерации»
- [12] Постановление Правительства РФ № 83 от 13 февраля 2006 г.«Правила определения и предоставления технических условий подключения объектов капитального строительства к сетям инженерно технического обеспечения
- [13] ОНД-86 Методика расчета концентраций в атмосферном воздухе вредных веществ
- [14] ПУЭ Правила устройства электроустановок
- [15] Федеральный закон от 30 марта 1999 г. N 52-ФЗ «О санитарно-эпидемиологическом благополучии населения»

Приложение 7-1 (рекомендуемое)

Категория помещений и зданий (сооружений) по взрывопожарной и пожарной опасности, степень огнестойкости зданий (сооружений), характеристика помещений по условиям среды и классификация зон в соответствии с ПУЭ

No	Наименование помещения,	Ориен-	Степень	Класс	Характерис-
п/п	здания, сооружения	тировоч	огнестой	конст-	тика помеще-
	, 15	ная	кости	рукт-	ний по усло-
		катего-	здания	ивной	виям среды и
		рия	(сооруже	пожар-	классифика-
		помеще	ния)	ной	ция зон по
		кин	по ĆНиП	опас-	взрывопо-
		здания,	21-01-	ности	жаной и
		сооруж	97*		пожарной
		ения			опасности в
					соответствии
					с ПУЭ
1	2	3	4	5	6
1. Кот	ельный зал:				
1.1.	При работе котлов на твердом				
	топливе с ручным	Γ	П,Ш	CO C1	Нормальное
	обслуживанием				
1.2.	При работе на остальных видах				
	топлива, в т.ч. с	Γ	П, Ш	CO C1	Нормальное
	механизированными топками				
2.	Помещение дымососов	Γ	П,Ш	CO C1	Нормальное
3.	Помещение деаэраторов	Д	П,Ш	CO C1	Нормальное
4. По	мещения химводоподготовки:				
4.1.	Фильтровальный зал	Д	П,Ш	CO C1	Влажное
4.2.	Помещение предочистки с узлом	Д	П,Ш	CO C1	Влажное
	приготовления реагентов				
4.3.	Помещение резервуаров и				
	насосных станций растворов	Д	П,Ш	CO C1	Влажное
	реагентов с химически активной				
	средой				
4.4.	Помещение электродиализных	Д	П,Ш	CO C1	Влажное
	установок				
	мещения складов реагентов:		T		
4.5.1.	Разгрузки и хранения извести,				
	коагулянта, соли, соды, кислоты	Д	П,Ш	CO C1	Нормальное
	и щелочи в негорючей упаковке				
4.5.2.	Хранения фосфатов, соды,				Пожароопас-
	полиакриламида в горючей	B1 - B4	П,Ш	CO C1	ные зоны
	упаковке				класса П-Па
4.5.3	Склады сульфоугля,				Пожароопас-
	активированного угля, кокса,	B1 - B4	П,Ш	CO C1	ные зоны

	3330.2012		T	T	T
1	2	3	4	5	6
	полукокса				класса II-IIa
5.	Помещение щитов управления	B1 - B4	П,Ш	CO C1	Нормальное
6. Элег	ктротехнические помещения:		<u> </u>	l.	1
6.1.	Помещение распределительных				
	устройств напряжением до 1 кв с				
	выключателями, содержащими	B1 – B4	П,Ш	CO C1	Нормальное
	60 и менее кг масла в единице		,		1
	оборудования				
6.2.	Помещение распределительных				
	устройств напряжением выше				
	Шкв. С выключателями,	B1 – B4	П,Ш	CO C1	Нормальное
	содержащими 60 и менее кг в		,		F
	единице оборудования				
6.3.	Помещение пристроенной и				
	встроенной комплектной				
	трансформаторной подстанции	B1 – B4	П,Ш	CO C1	Нормальное
	(КТП) с масляными				
	трансформаторами				
6.4.	Камера пристроенная и				
	встроенная с масляным	B1 – B4	П,Ш	CO C1	Нормальное
	трансформатором				
6.5.	Помещение пристроенной и				
	встроенной конденсаторной				
	установки с общей массой масла				
	в каждой, кг				
	до 600	B1 - B4	П, Ш	CO C1	Нормальное
	более 600	B1 - B4	П,Ш	CO C1	Нормальное
7. Пом	ещения и сооружения топливопо,	дачи твер	дого топли	ва:	
7.1.	Надбункерная галерея, узел				
,	пересыпки, дробильное				Пожароопас-
	отделение, закрытые				ные зоны
	разгрузочные (приемные)	В	П,Ш	CO C1	класса П-Па
	устройства, помещение		,		
	скреперных лебедок				
7.2.	Дробильные отделения для				Взрывоопас-
	фрезерного торфа	Б	П	CO	ная зона
					класса В-Па
7.3.	Конвейерные галереи твердого				Пожароопас-
	топлива	B1 – B4	П,Ш	CO C1	ные зоны
					класса П-Па
7.4.	Помещения размораживающих	B1 – B4	П,Ш	CO C1	Пожароопасн
	устройств для твердого топлива				ые зоны
					класса П-Па
7.5.	Открытые (без навеса), отдельно	-	-		Пожароопасн
	стоящие разгрузочные эстакады				ые зоны
	и склады твердого топлива.				класса П-Ш
7.6.	Закрытые склады угля	B1 – B4	П	CO	Пожароопас-
					ные зоны
					класса П-Па
7.7.	Помещения	Б	П,Ш	CO C1	Взрывоопас-
	<u>.</u>			•	

				T =	C11 89. 13330.20
1	2	3	4	5	6
	пылеприготовительных				ные зоны
	установок				класса В-1а
8.	Помещения золоулавливающих		_		
	устройств и сооружений систем	Γ	П,Ш	CO C1	Пыльные
	"сухого" золошлакоудаления				
9.	Багерные насосные станции,				
	шламовые насосные станции и				
	другие сооружения и помещения	Д	П,Ш	CO C1	Сырые
	гидрозолошлакоудаления или				
	"мокрого" скреперного				
	золошлакоудаления				
10.	Закрытые склады, камеры				
	управления задвижками,				
	насосные станции и резервуары				
	хранения легковоспламеняю-				
	щихся жидковстей с темпера-				
	турой вспышки более 28°C и				
	горючих жидкостей, при вос-				
	пламенении которых развива-	Б	П,Ш	CO C1	Взрывоопас-
	ется расчетное избыточное				ные зоны
	давление взрыва в помещении				
	(резервуаре), превышающее				
	5 Кпа, а также горючих жидкос-				
	тей, нагретых в условиях				
	производства выше температуры				
	вспышки				
11.	Закрытые склады, камеры				
	управления задвижками,				
	насосные станции и резервуары				
	хранения горючих жидкостей,	B1 – B4	П,Ш	CO C1	Пожароопасн
	если эти помещения				ые зоны
	(резервуары) не относятся к				класса П-1
	категории Б				
12.	Наружные приемносливные				
	устройства				Взрывоопасн
	легковоспламеняющихся				ая зона
	жидкостей с температурой	\mathbf{P}^{H}	П,Ш	CO C1	класса В-1г
	вспышки более 28°C				
13.	Наружные приемносливные	$\mathrm{B}_{\scriptscriptstyle \mathrm{H}}$	П,Ш	CO C1	Пожароопасн
	устройства горючих жидкостей				ая зона
					класса П-Ш
14.	Помещения газорегуляторных	A	П	CO	Взрывоопасн
	пунктов (ГРП) и складов				ые зоны
	горючих газов				класса В-1а
	сосные станции:	,		T	
15.1.	Насосные станции питьевого				
	водоснабжения и противопожар-	Д	П,Ш	C1 C2	Влажное
	ного водоснабжения				
15.2.	Насосная станция перекачки	Д	П,Ш	C1 C2	Влажное
	конденсата				
15.3.	Насосная станция хозяйственно-	Д	П,Ш	C1 C2	Влажное

1	2	3	4		5
	фекальных вод				
16.	Станция мехобезвоживания	Д	П,Ш	C1 C2	Влажное
17.	Ремонтная мастерская (без литейной, кузницы и сварочной)	Д	П,Ш	CO C1	Нормальное
	литеиной, кузницы и сварочной)				
18.	Материальный склад	B1 – B4	П,Ш	CO C1	Нормальное

- Примечания: 1. Допустимое количество этажей и площадь этажа здания (сооружения) в пределах пожарного отсека следует принимать по СП 56.13330 в соответствии с категорией и степенью огнестойкости здания.
 - 2. В труднодоступных районах, удаленных от строительной базы, котельные тепловой мощностью до 3,0 МВт допускается располагать в зданиях 1У степени огнестойкости, мощностью более 3 МВт в зданиях 1У степени огнестойкости с ограничением по площади этажа в соответствии с СП 56.13330 и высотой здания до 18 м.
 - 3. В колонке 3 приведена ориентировочная категория здания (помещения) и наружных установок, которая должна быть подтверждена расчетом по СП 12.13130.

Приложение 6-1 (обязательное)

Перечень профессий работников котельных по категориям работ и состав специальных бытовых помещений и устройств

Профессия	Категория	Специальные бытовые
	работ	помещения и устройства
1. Старший машинист, машинист (операт	- /	
машинист вспомогательного оборудовани	ия:	
1.1 в котельных при работе на		
газообразном, жидком и твердом топливе	16	-
(при камерном сжигании)		
1.2 в котельных при работе на твердом	Іб	см. примечание 2
топливе (при слоевом сжигании) с		
механизированными топками		
1.3 в котельных при работе на твердом		
топливе (при слоевом сжигании) с	ΙΙб	
ручными топками		
2. Слесарь, слесарь-электрик, слесарь по	Іб	-
КИПиА		
3. Электромонтер, приборист	1б	-
4.Обслуживающий персонал станций	1б	-
дводоподготовки		
5. Рабочие складов извести	16	см. примечание 2
6. Рабочие складов, кислот, щелочей,		Искусственная вентиляция
гидразина и полиакриламида	III	шкафов для рабочей
1		одежды
7. Водители бульдозеров,		Помещения для
автопогрузчиков, автокранов, рабочие		обогревания работающих,
складов твердого и жидкого топлива;	III	устройства для сушки
рабочие топливоподачи и		рабочей одежды и обуви,
золошлакоудаления		устанавливаемые в
		бытовых помещениях;
		искусственная вентиляция
		шкафов рабочей одежды
		(только для рабочих
		складов топлива).
		Обеспыливание одежды в
		соответствии с
		примечанием 2. •

Примечания: 1. Категории работ для работающих на тех или иных участках производства относятся также к инженерно-техническому и обслуживающему персоналу этих участков производств.

- 2. Помещения для обеспыливания рабочей одежды и респираторные не предусматриваются. Обеспыливание одежды следует предусматривать в шкафах рабочей одежды бытовым пылесосом. Помещения для проверки и перезарядке респираторов не предусматриваются. Для хранения респираторов следует предусматривать специальные шкафы при гардеробных.
 - 3. Хранение всех видов одежды следует предусматривать в общих гардеробных в закрытых шкафах.

Приложение 6-1 (рекомендуемое)

Таблица 6.1

Диаметры карманов

Условный диаметр паропровода, $Д_{\nu}$, мм	100-	150-	200-	300-	400-	500-	700-	900-
	125	175	250	350	450	600	800	1200
Условный диаметр кармана, $Д_{vI}$, мм	50	80	100	150	200	250	300	350

Таблица 6.2

Диаметры штуцеров и запорной арматуры дренажных паропроводов

Условный диаметр	До 70	80-125	150-	200-	300-	450-	700-	900-
паропровода, Д $_{y}$, мм	включ	80-125	175	250	400	600	800	1200
Условный диаметр								
штуцера и арматуры,	25	32	40	50	80	100	125	150
Ду, мм								

Таблица 6.3

Диаметры штуцеров и запорной арматуры для спускников

Условный диаметр	До 70	80-	150-	200-	300-	450-	600-	800-	1000-
паропровода, Ду, мм	включ	125	175	250	400	500	700	900	1200
Условный диаметр									
штуцера и арматуры,	25	40	50	80	100	150	200	250	300
$\mathcal{L}_{\mathcal{V}}$, мм									

Таблица 6.4

Диаметры воздушников

Условный						
диаметр	25-80	100-150	175-300	350-450	500-700	800-1200
трубопровода, Ду,	25 00	100 150	175 500	330 130	300 700	000 1200
MM						
Условный						
диаметр	15	20	25	32	40	50
воздушника, Д _у , м						

Приложение 9-1 (обязательное)

Коэффициент запаса при выборе дымососов и дутьевых вентиляторов

Тепловая мощность (для	Коэффициент запаса						
паровых котлов по эквивалентной производительности), МВт							
	по произво,	дительности	по давлению				
	дымососы	дутьевые	Дымососы	дутьевые			
		вентиляторы		вентиляторы			
До 17,5	1,1	1,1	1,2	1,2			
Более 17,5	1,1	1,05	1,1	1,1			

Приложение 10-1 (рекомендуемое)

Минимальные расстояния в свету между поверхностями теплоизоляционных конструкций смежных трубопроводов и от поверхности тепловой изоляции трубопроводов до строительных конструкций здания

	Наименьшее расстояние "в свету" от поверхности							
Условный проход	оход теплоизоляционной конструкции, мм							
трубопроводов, мм	до строительной	до строительной до поверхности теплоизоляционной						
	конструкции здания конструкции смежного трубопровода							
		по вертикали по горизонтали						
до 80	150	100 100						
100-250	170	140 140						
300 - 350	200	160	160					
400 - 450	200	160	200					
500 - 700	200	200 200						
800 - 900	250	200 250						
1000 - 1400	350	300 300						

Примечание. При реконструкции котельных с использованием существующих строительных конструкций и трубопроводов допускаются отступления от размеров, указанных в данной таблице.

Приложение 14-1 (рекомендуемое)

Минимальная толщина стенок пневмотрубопроводов в зависимости от диаметра

Диаметр трубы,	d_{yc}	100	125	150	175	200	250
MM							
	d _{нар}	114	146	168	194	219	272
Толщина	δ	6-8	8-12	8-14	8-14	8-16	10-20
стенки, мм							

Примечание. Меньшие величины относятся к начальным участкам.

Приложение 17-1 (обязательное)

Температура воздуха в рабочей зоне производственных помещений, системы вентиляции, способы подачи и удаления воздуха

Помещения	Производс твенные вредности	Температура воздуха, ⁰ C не менее			Приточная вентиляция	
		В холод- ный период	В теп- лый период	Вытяжная вентиляция	Холодный период	Теплый период
1	2	3	4	5	6	7
Котельный зал: с постоянным присутствием обслуживающего персонала	Избыточ- ные тепло- выделения	17	Не более, чем на 4 °C выше средней температуры самого жаркого месяца	Естественная из верхней зоны и за счет подсоса в газовоздушный тракт котельной установки. При необходимости с механическим побуждением из верхней зоны, в том числе дутьевыми вентиляторами	Естественная с притоком воздуха на высоте не менее 4 м до низа открытых проемов за котлами. При необходимости с механическим побуждением	Естественная с подачей воздух рабочую зону. При необходимости механическим побуждением
 без постоянного присутствия 				-		
обслуживающего персонала	То же	5	То же	То же	То же	То же
2. Зольные помещения*: 1) при непрерывной зыгрузке золы и шлака	Пыль	5	То же	Местные отсосы от укрытий мест пыления	С механическим побуждением на компенсацию вытяжной вентиляции	Естественная
5) при периодической зыгрузке золы и шлака	Пыль	5	То же	Естественная	Естественная	Естественная

1	2	3	4	5	6	7
3. Водоподготовка в этдельном помещении	Теплота	17	То же	Естественная из верхней зоны. При	Естественная с подачей воздуха в	Естественная с подачей воздух
				необходимости с	верхнюю зону.	рабочую зону.
				механическим	При	
				побуждением	необходимости с	
					механическим	
					побуждением	
1. Отапливаемые	Пыль	10	То же	Местные отсосы от	С механическим	Естественная
сонвейерные галереи,				укрытий мест	побуждением на	
/злы пересыпок,				пыления	компенсацию	
цробильные отделения					вытяжной	
для угля и кускового					вентиляции и	
горфа, надбункерная					подачей воздуха в	
салерея					верхнюю зону	
5. Пылеприготовитель-	Пыль	15	То же	То же	То же	То же
ные установки в						
этдельных						
томещениях						
5. Насосные станции:	Избыточ-	17	То же	Естественная из	Естественная с	Естественная
 с постоянным 	ные			верхней зоны. При	подачей воздуха в	
обслуживающим	тепловы-			необходимости с	верхнюю зону.	
терсоналом	деления			механическим	При	
				побуждением	необходимости с	
					механическим	
б) без постоянного					побуждением	
обслуживающего	То же	5	То же	То же	То же	То же
терсонала в						
			1	F.	G	
7. Помещения щитов		_	0	Естественная из	С механическим	С механически
/правления КИП			0	верхней зоны. При	побуждением,	побуждением,
		(круглогодично)		необходимости с	подачей воздуха в	подачей воздух
				механическим	верхнюю зону и очисткой его от	верхнюю зону (
				побуждением.		
					ПЫЛИ	ПЫЛИ
		ĺ			1	ĺ

1	2	3	4	5	6	7
3. Склады реагентов: а) склад извести	пыль	10	То же	Местные отсосы от укрытий мест пыления	С механическим побуждением на компенсацию местных отсосов	Естественная
5) склад сальцинированной соды, натрий хлорида и соагулянтов		10	То же	Естественная	Естественная	Естественная
з) склад фильтрующих материалов и рлокулянтов		5	То же	То же	То же	То же
) склад кислоты и целочи	Пары кислоты и щелочи	10	То же	Естественная Аварийная - 5 обменов в час	Естественная	Естественная
Э. Лаборатории		19	То же	Местные отсосы от шкафов. При отсутствии шкафов по расчету на разбавление выделяющихся вредностей. При отсутствии данных по выделяющимся вредностям - 3 обмена в час	Механическая на компенсацию вытяжной вентиляции	Естественная, п необходимости механическим побуждением

^{*} Следует предусматривать блокировку вытяжных вентиляторов с механизмами золошлакоудаления в период выгрузки золы и шлака.